Skip to main content
Log in

Nanotechnology and DNA Delivery

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nonviral DNA delivery systems have great therapeutic and prophylactic potential, but their clinical utility has been limited by three major barriers: (1) inefficient uptake by the cell, (2) insufficient release of DNA within the cell, and (3) ineffective nuclear targeting and transport. Since the size of most cells is in the micrometer regime and the space inside a cell is extremely crowded, ideal DNA delivery systems must be in the nanometer range. Advancements in nanoscale science and nanotechnology have provided us with novel nanoparticles that may overcome all of these barriers, leading to higher-efficiency DNA delivery. This review article will focus on the recent developments in nanoscale DNA delivery systems that consist of chemical dendrimers, DNA dendrimers, nanospheres, nanolayers, nanorods, and nanotubes. The future of DNA delivery systems that interface with nanotechnology is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Luo and W.M. Saltzman, Nat. Biotechnol. 18 (2000) p. 33.

    Article  CAS  Google Scholar 

  2. Data from PubMed database as of July 2005, www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed (accessed July 2005).

  3. U.F. Greber, M. Willetts, P. Webster, and A. Helenius, Cell 75 (1993) p. 477.

    Article  CAS  Google Scholar 

  4. E. Wagner, C. Plank, K. Zatloukal, M. Cotton, and M.L. Birnstiel, Proc. Natl. Acad. Sci. USA 89 (1992) p. 7934.

    Article  CAS  Google Scholar 

  5. G. Elliott and P. O’Hare, Cell 88 (1997) p. 223.

    Article  CAS  Google Scholar 

  6. J.A. Leifert and J. Lindsay Whitton, Mol. Ther. 8 (2003) p. 13.

    Article  CAS  Google Scholar 

  7. J.M.J. Frechet and E. Tomalia, Dendrimers and Other Dendritic Polymers (John Wiley & Sons, New York, 2001).

    Book  Google Scholar 

  8. R. Esfand and D.A. Tomalia, Drug Discovery Today 6 (2001) p. 427.

    Article  CAS  Google Scholar 

  9. D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J. 17 (1985) p. 117.

    Article  CAS  Google Scholar 

  10. R. Benters, C.M. Niemeyer, and D. Wohrle, ChemBioChem 2 (2001) p. 686.

    Article  CAS  Google Scholar 

  11. R. Benters, C.M. Niemeyer, D. Drutschmann, D. Blohm, and D. Wohrle, Nucleic Acids Res. 30 (2002) p. E10.

    Article  Google Scholar 

  12. D.C. Tully, K. Wilder, J.M.J. Frechet, A.R. Trimble, and C.F. Quate, Adv. Mater. 11 (1999) p. 314.

    Article  CAS  Google Scholar 

  13. R.F. Service, Science 267 (1995) p. 458.

    Article  CAS  Google Scholar 

  14. J.M. Frechet, Proc. Natl. Acad. Sci. USA 99 (2002) p. 4782.

    Article  CAS  Google Scholar 

  15. J. Haensler and F.C. Szoka Jr., Bioconjug. Chem. 4 (1993) p. 372.

    Article  CAS  Google Scholar 

  16. R.C. Hedden and B.J. Bauer, Macromolecules 36 (2003) p. 1829.

    Article  CAS  Google Scholar 

  17. A.U. Bielinska, C.L. Chen, J. Johnson, and J.R. Baker, Bioconjug. Chem. 10 (1999) p. 843.

    Article  CAS  Google Scholar 

  18. J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, and J.R. Baker Jr., Proc. Natl. Acad. Sci. USA 93 (1996) p. 4897.

    Article  CAS  Google Scholar 

  19. M.X. Tang, C.T. Redemann, and F.C. Szoka Jr., Bioconjug. Chem. 7 (1996) p. 703.

    Article  CAS  Google Scholar 

  20. D. Luo, K. Haverstick, N. Belcheva, E. Han, and W.M. Saltzman, Macromolecules 35 (2002) p. 3456.

    Article  CAS  Google Scholar 

  21. T.I. Kim, H.J. Seo, J.S. Choi, H.S. Jang, J.U. Baek, K. Kim, and J.S. Park, Biomacromolecules 5 (2004) p. 2487.

    Article  CAS  Google Scholar 

  22. J.H. Lee, Y.B. Lim, J.S. Choi, Y. Lee, T.I. Kim, H.J. Kim, J.K. Yoon, K. Kim, and J.S. Park, Bioconjug. Chem. 14 (2004) p. 1214.

    Article  CAS  Google Scholar 

  23. K. Kono, H. Akiyama, T. Takahashi, T. Takagishi, and A. Harada, Bioconjug. Chem. 16 (2005) p. 208.

    Article  CAS  Google Scholar 

  24. T.P. Thomas, A.K. Patri, A. Myc, M.T. Myaing, J.Y. Ye, T.B. Norris, and J.R. Baker Jr., Biomacromolecules 5 (2004) p. 2269.

    Article  CAS  Google Scholar 

  25. Y. Choi, T. Thomas, A. Kotlyar, M.T. Islam, and J.R. Baker Jr., Chem. Biol. 12 (2005) p. 35.

    Article  CAS  Google Scholar 

  26. D. Luo and Y. Li, in Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology, Vol. 1–2 (American Scientific, Los Angeles, 2005).

    Google Scholar 

  27. C. Bouchiat, M.D. Wang, J. Allemand, T. Strick, S.M. Block, and V. Croquette, Biophys. J. 76 (1999) p. 409.

    Article  CAS  Google Scholar 

  28. B. Tinland, A. Pluen, J. Sturm, and G. Weill, Macromolecules 30 (1997) p. 5763.

    Article  CAS  Google Scholar 

  29. K. Toth, V. Sauermann, and J. Langowski, Biochemistry 37 (1998) p. 8173.

    Article  CAS  Google Scholar 

  30. R.J. Roberts and D. Macelis, Nucleic Acids Res. 29 (2001) p. 268.

    Article  CAS  Google Scholar 

  31. D. Luo, Mater. Today 6 (2003) p. 38.

    Article  CAS  Google Scholar 

  32. J.H. Chen and N.C. Seeman, Nature 350 (1991) p. 631.

    Article  CAS  Google Scholar 

  33. Y. Li, Y.D. Tseng, S.Y. Kwon, L. D’Espaux, J.S. Bunch, P.L. McEuen, and D. Luo, Nat. Mater. 3 (2004) p. 38.

    Article  CAS  Google Scholar 

  34. C.W. Anderson, M.E. Young, and S.J. Flint, Virology 172 (1989) p. 506.

    Article  CAS  Google Scholar 

  35. C. Plank, W. Zauner, and E. Wagner, Adv. Drug Deliv. Rev. 34 (1998) p. 21.

    Article  CAS  Google Scholar 

  36. V. Escriou, M. Carriere, D. Scherman, and P. Wils, Adv. Drug Deliv. Rev. 55 (2003) p. 295.

    Article  CAS  Google Scholar 

  37. C. Kneuer, M. Sameti, U. Bakowsky, T. Schiestel, H. Schirra, H. Schmidt, and C.M. Lehr, Bioconjug. Chem. 11 (2000) p. 926.

    Article  CAS  Google Scholar 

  38. C. Kneuer, M. Sameti, E.G. Haltner, T. Schiestel, H. Schirra, H. Schmidt, and C.M. Lehr, Int. J. Pharm. 196 (2000) p. 257.

    Article  CAS  Google Scholar 

  39. M.N.V.R. Kumar, M. Sameti, S.S. Mohapatra, X. Kong, R.F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt, and C.M. Lehr, J. Nanosci. Nanotechnol. 4 (2004) p. 876.

    Article  CAS  Google Scholar 

  40. D. Luo and W.M. Saltzman, Nat. Biotechnol. 18 (2000) p. 893.

    Article  CAS  Google Scholar 

  41. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, and C. Plank, Gene Ther. 9 (2002) p. 102.

    Article  CAS  Google Scholar 

  42. C. Plank, U. Schillinger, F. Scherer, C. Bergemann, J.S. Remy, F. Krotz, M. Anton, J. Lausier, and J. Rosenecker, Biol. Chem. 384 (2003) p. 737.

    Article  CAS  Google Scholar 

  43. D. Luo, E. Han, N. Belcheva, and W.M. Saltzman, J. Control. Release 95 (2004) p. 333.

    Article  CAS  Google Scholar 

  44. R.A. Gemeinhart, D. Luo, and W.M. Saltzman, Biotechnol. Prog. 21 (2005) p. 532.

    Article  CAS  Google Scholar 

  45. I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, and P.N. Prasad, Proc. Natl. Acad. Sci. USA 102 (2005) p. 279.

    Article  CAS  Google Scholar 

  46. D.R. Radu, C.Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, and V.S. Lin, J. Am. Chem. Soc. 126 (2004) p. 13216.

    Article  CAS  Google Scholar 

  47. K.M. Tyner, M.S. Roberson, K.A. Berghorn, L. Li, R.F. Gilmour Jr., C.A. Batt, and E.P. Giannelis, J. Control. Release 100 (2004) p. 399.

    Article  CAS  Google Scholar 

  48. A.K. Salem, P.C. Searson, and K.W. Leong, Nat. Mater. 2 (2003) p. 668.

    Article  CAS  Google Scholar 

  49. D. Pantarotto, J.P. Briand, M. Prato, and Bianco, Chem. Commun. (Camb.) (2004) p. 16.

  50. N.W. Shi Kam, T.C. Jessop, P.A. Wender, and H. Dai, J. Am. Chem. Soc. 126 (2004) p. 6850.

    Article  CAS  Google Scholar 

  51. K.M. Lee, L. Li, and L. Dai, J. Am. Chem. Soc. 127 (2005) p. 4122.

    Article  CAS  Google Scholar 

  52. R. Singh, D. Pantarotto, D. McCarthy, O. Chaloin, J. Hoebeke, C.D. Partidos, J.P. Briand, M. Prato, A. Bianco, and K. Kostarelos, J. Am. Chem. Soc. 127 (2005) p. 4388.

    Article  CAS  Google Scholar 

  53. K.L. Dreher, Toxicological Sci. 77 (2004) p. 3.

    Article  CAS  Google Scholar 

  54. B. Halford, Chem. Engr. News 82 (2004) p. 14.

    Article  Google Scholar 

  55. T. Segura and L.D. Shea, Bioconjug. Chem. 13 (2002) p. 621.

    Article  CAS  Google Scholar 

  56. T. Segura, M.J. Volk, and L.D. Shea, J. Control. Release 93 (2003) p. 69.

    Article  CAS  Google Scholar 

  57. T. Segura, B.C. Anderson, P.H. Chung, R.E. Webber, K.R. Shull, and L.D. Shea, Biomaterials 26 (2005) p. 359.

    Article  CAS  Google Scholar 

  58. H. Shen, J. Tan, and W.M. Saltzman, Nat. Mater. 3 (2004) p. 569.

    Article  CAS  Google Scholar 

  59. C. Wang, Q. Ge, D. Ting, D. Nguyen, H.R. Shen, J. Chen, H.N. Eisen, J. Heller, R. Langer, and D. Putnam, Nat. Mater. 3 (2004) p. 190.

    Article  CAS  Google Scholar 

  60. S. Um, S. Kwon, J. Lee, and D. Luo, Proc. Natl. Acad. Sci. USA (2005) submitted.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, D. Nanotechnology and DNA Delivery. MRS Bulletin 30, 654–658 (2005). https://doi.org/10.1557/mrs2005.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.192

Keywords

Navigation