Skip to main content
Log in

Manufacturing Nanocomposite Parts: Present Status and Future Challenges

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The promises of nanotechnology are mostly based upon the ability to produce nanostructured materials with novel properties. Nanocomposites are defined here as a class of materials that contain at least one phase with constituents in the nanometer domain. This article describes the present state of knowledge of the fabrication of nanocomposite materials, with special emphasis on plasma forming of bulk parts. Future challenges facing the development of methods for consolidating nanocomposites with retained nanostructures are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy, R.A. Roy, and D.M. Roy, Mater. Lett. 4 (1986) p. 323.

    Google Scholar 

  2. T. Sekino, T. Nakajima, and K. Niihara, Mater. Lett. 29 (1996) p. 165.

    CAS  Google Scholar 

  3. M. Sternitzke, J. Eur. Ceram. Soc. 17 (1997) p. 1061.

    CAS  Google Scholar 

  4. R. Riedel, H.-J. Kleebe, H. Schonfelder, and F. Aldinger, Nature 374 (1995) p. 526.

    CAS  Google Scholar 

  5. K. Niihara, J. Ceram. Soc. Jpn. 99 (1991) p. 974.

    CAS  Google Scholar 

  6. D.N. Lambeth, E.M.T. Velu, G.H. Bellesis, L.L. Lee, and D.E. Laughlin, J. Appl. Phys. 79 (1996) p. 4496.

    CAS  Google Scholar 

  7. A. Meldrum, L.A. Boatner, and C.W. White, Nucl. Instrum. Methods Phys. Res., Sect. B 178 (2001) p. 7.

    CAS  Google Scholar 

  8. S. Özkar, G.A. Ozin, and R.A. Prokopowicz, Chem. Mater. 4 (1992) p. 1380.

    Google Scholar 

  9. M.J. Mayo, Int. Mat. Rev. 41 (1996) p. 85.

    CAS  Google Scholar 

  10. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976) p. 486.

    Google Scholar 

  11. J.R. Groza, Nanostruct. Mater. 12 (1999) p. 987.

    Google Scholar 

  12. C.C. Koch, Nanostruct. Mater. 2 (1993) p. 109.

    CAS  Google Scholar 

  13. J.R. Groza and R.J. Dowding, Nanostruct. Mater. 7 (1996) p. 749.

    CAS  Google Scholar 

  14. D.-J. Chen and M.J. Mayo, Nanostruct. Mater. 2 (1993) p. 469.

    CAS  Google Scholar 

  15. G. Skandan, H. Hahn, B.H. Kear, M. Roddy, and W.R. Cannon, Mater. Lett. 20 (1994) p. 305.

    CAS  Google Scholar 

  16. S.H. Risbud, C.-H. Shan, and A.K. Mukherjee, J. Mater. Res. 10 (1995) p. 237.

    CAS  Google Scholar 

  17. J. Westerlund and A. Vimercati, Metal Powder Report 55 (2) (2000) p. 14.

    Google Scholar 

  18. A.H. Jones, R.S. Dobedoe, and M.H. Lewis, J. Eur. Ceram. Soc. 21 (2001) p. 969.

    CAS  Google Scholar 

  19. R. Vassen and D. Stöver, Mater. Sci. Eng., A 301 (2001) p. 59.

    Google Scholar 

  20. M.J. Hoffmann, A. Geyer, and R. Oberacker, J. Eur. Ceram. Soc. 19 (1999) p. 2359.

    CAS  Google Scholar 

  21. P. Burger, R. Duclos, and J. Crampon, Mater. Sci. Eng., A 222 (1997) p. 175.

    Google Scholar 

  22. M. Oehring, F. Appel, Th. Pfullmann, and R. Bormann, Appl. Phys. Lett. 66 (1995) p. 941.

    CAS  Google Scholar 

  23. C. Suryanarayana, G.E. Korth, and F.H. Froes, Metall. Mater. Trans. A 28A (1997) p. 293.

    CAS  Google Scholar 

  24. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Metall. Mater. Trans. A 26A (1995) p. 2479.

    CAS  Google Scholar 

  25. G. Skandan, Nanostruct. Mater. 5 (1995) p. 111.

    CAS  Google Scholar 

  26. L. He and E. Ma, J. Mater. Res. 11 (1996) p. 72.

    CAS  Google Scholar 

  27. G.R. Shauk and W.W. Milligan, Metall. Mater. Trans. A 28A (1997) p. 895.

    Google Scholar 

  28. Y. Xu, A. Zangvil, and A. Kerber, J. Eur. Ceram. Soc. 17 (1997) p. 921.

    CAS  Google Scholar 

  29. M. Krasnowski and T. Kulik, Scripta Mater. 48 (2003) p. 1489.

    CAS  Google Scholar 

  30. S.-C. Liao, K.D. Pae, and W.E. Mayo, Nanostruct. Mater. 8 (1997) p. 645.

    CAS  Google Scholar 

  31. B.H. Kear, J. Colauzzi, W.E. Mayo, and S.-C. Liao, Scripta Mater. 44 (2001) p. 2065.

    CAS  Google Scholar 

  32. S.W. Wang, L.D. Chen, and T. Hirau, J. Mater. Res. 15 (2000) p. 982.

    CAS  Google Scholar 

  33. M. Omori, Mater. Sci. Eng., A 287 (2000) p. 183.

    Google Scholar 

  34. L. Gao, H. Wang, H. Kawaoka, T. Sekino, and K. Niihara, J. Eur. Ceram. Soc. 22 (2002) p. 785.

    CAS  Google Scholar 

  35. S.H. Risbud, J.R. Groza, and M.J. Kim, Philos. Mag. B 69 (1994) p. 525.

    CAS  Google Scholar 

  36. R.S. Mishra and A.K. Mukherjee, Mater. Sci. Eng., A 287 (2000) p. 178.

    Google Scholar 

  37. T.-J. Goodwin, S.H. Yoo, P. Matteazzi, and J.R. Groza, Nanostruct. Mater. 8 (1997) p. 559.

    CAS  Google Scholar 

  38. S.I. Cha, S.H. Hong, and B.K. Kim, Mater. Sci. Eng., A 351 (2003) p. 31.

    Google Scholar 

  39. S.H. Yoo, T.S. Sundaram, K. Sethuram, G. Subhash, and R.J. Dowding, Nanostruct. Mater. 12 (1999) p. 23.

    Google Scholar 

  40. R.Z. Valiev, R.S. Mishra, J.R. Groza, and A.K. Mukherjee, Scripta Mater. 34 (1996) p. 1443.

    CAS  Google Scholar 

  41. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Metall. Mater. Trans. A 29A (1998) p. 2253.

    CAS  Google Scholar 

  42. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev, Nanostruct. Mater. 10 (1998) p. 45.

    CAS  Google Scholar 

  43. D.K. Agrawal, Curr. Opin. Solid State Mater. 3 (1998) p. 480.

    CAS  Google Scholar 

  44. D. Lewis, R.J. Rayne, B.A. Bender, L.K. Kurihara, G.-M. Chow, A. Fliflet, A. Kincaud, and R. Bruce, Nanostruct. Mater. 9 (1997) p. 97.

    CAS  Google Scholar 

  45. Ph. Boch and N. Lequeux, Solid State Ionics 101–103 (1997) p. 1229.

    Google Scholar 

  46. M.I. Jones, M.-C. Valecillos, K. Hirao, and Y. Yamauchi, J. Eur. Ceram. Soc. 22 (2002) p. 2981.

    CAS  Google Scholar 

  47. Yu. Bykov, A. Eremeev, S. Egorov, V. Ivanov, Yu. Kotov, V. Khrustov, and A. Sorokin, Nanostruct. Mater. 12 (1999) p. 115.

    Google Scholar 

  48. W.H. Gourdin, Prog. Mater. Sci. 30 (1986) p. 39.

    CAS  Google Scholar 

  49. S.C. Glade and N.N. Thadhani, Metall. Mater. Trans. A 26A (1995) p. 2565.

    CAS  Google Scholar 

  50. G.E. Korth and R.L. Williamson, Metall. Mater. Trans. A 26A (1995) p. 2571.

    CAS  Google Scholar 

  51. M. Jaun and T. Christman, Acta Metall. Mater. 42 (1994) p. 1901.

    Google Scholar 

  52. J. Mazumder, in Metallurgical and Ceramic Protective Coatings, edited by K.H. Stern (Chapman & Hall, London, 1996) p. 74.

  53. A. Agarwal and N.B. Dahotre, Int. J. Refract. Met. Hard Mater. 17 (1999) p. 283.

    CAS  Google Scholar 

  54. K. Cau, D. Guo, Y. Huang, and J. Yang, J. Eur. Ceram. Soc. 23 (2003) p. 921.

    Google Scholar 

  55. M. Mayne, D. Bahloul-Hourlier, B. Doucey, P. Goursat, M. Cauchetier, and N. Herlin, J. Eur. Ceram. Soc. 18 (1998) p. 1187.

    CAS  Google Scholar 

  56. S. Seal, S.C. Kuiry, P. Georgieva, and K. Rea, “Ni-Alumina Nanocomposite by In Situ Formation of Ni Nanoparticles during Thermal Processing” (unpublished manuscript).

  57. S. Sampath and H. Herman, JOM 45 (7) (1993) p. 42.

    CAS  Google Scholar 

  58. M. Smagorinski, P. Tasantrizos, S. Grenier, M. Entezarian, and F. Ajersh, JOM 48 (6) (1996) p. 56.

    CAS  Google Scholar 

  59. A. Agarwal and T. McKechnie, Adv. Mater. Processes 159 (2001) p. 44.

    CAS  Google Scholar 

  60. R. Hickman, T. McKechnie, and A. Agarwal, “Net Shape Fabrication of High Temperature Materials for Rocket Engine Components,” presented at 37th AIAA/ASME/ SAE/ASEE/Joint Propulsion Conf., Salt Lake City, Utah, July 8–11, 2001, paper No. AIAA- 2001-3435.

  61. R.W. Smith and R. Knight, JOM 47 (8) (1995) p. 32.

    CAS  Google Scholar 

  62. R.S. Lima, A. Kucuk, U. Senturk, and C.C. Berndt, J. Thermal Spray Technol. 10 (1) (2001) p. 150.

    Google Scholar 

  63. J. He, M. Ice, J.M. Schoenung, D.H. Shin, and E.J. Lavernia, J. Thermal Spray Technol. 10 (2) (2001) p. 293.

    CAS  Google Scholar 

  64. Y. Wang, S. Jiang, M. Wang, S. Wang, T.D. Xiao, and P.R. Strutt, Wear 237 (2000) p. 176.

    CAS  Google Scholar 

  65. H. Chen and C.X. Ding, Surf. Coat. Technol. 150 (2002) p. 31.

    CAS  Google Scholar 

  66. L.L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T.D. Xiao, and P.R. Strutt, Surf. Coat. Technol. 130 (2000) p. 1.

    CAS  Google Scholar 

  67. R. Knight, E. Petrovicova, E. Xiaohua, T.T. Twardowski, L.S. Schandler, and T. Hanlon, J. Thermal Spray Technol. 10 (1) (2001) p. 170.

    Google Scholar 

  68. A. Agarwal, T. McKechnie, and S. Seal, JOM 54 (2002) p. 42.

    CAS  Google Scholar 

  69. A. Agarwal, T. McKechnie, and S. Seal, J. Thermal Spray Technol. 12 (3) (2003) p. 350

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, S., Kuiry, S.C., Georgieva, P. et al. Manufacturing Nanocomposite Parts: Present Status and Future Challenges. MRS Bulletin 29, 16–21 (2004). https://doi.org/10.1557/mrs2004.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.11

Keywords

Navigation