Skip to main content
Log in

Scale Effects in Cellular Metals

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scale effects in cellular metals can develop when the specimen size is of the order of the cell size. Decreasing the relevant specimen dimensions—height, width, and ligament size (the region between notches in notched specimens)—leads to material strengthening in shear, in indentation, and in notched specimens and to reduced strength and stiffness in uniaxial compression. Experimental size-effect studies were reviewed, and it was concluded from discrete modeling results that scale effects are caused by two different microstructural mechanisms: boundary-layer effects and constraint effects. The first mechanism is active in shear (strong boundary layers) and uniaxial compression (weak boundary layers) and vanishes for specimens larger than two cell sizes and seven cell sizes, respectively. The second mechanism is active in indentation and in notched specimens, leading to a strengthening behavior that is inversely proportional to indenter and ligament size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, L.W. Hutchinson, and H.G. Wadley, Metal Foams: A Design Guide (Butterworth-Heinemann, Oxford, UK, 2000).

    Google Scholar 

  2. A.G. Evans, J.W. Hutchinson, and M.F. Ashby, Prog. Mater. Sci. 43 (1998) p. 171.

    Article  CAS  Google Scholar 

  3. E.W. Andrews, G. Gioux, P.R. Onck, and L.J. Gibson, Int. J. Mech. Sci. 34 (2000) p. 701.

    Google Scholar 

  4. A.-F. Bastawros, H. Bart-Smith, and A.G. Evans, J. Mech. Phys. Solids 48 (2000) p. 301.

    Article  CAS  Google Scholar 

  5. C. Chen and N.A. Fleck, J. Mech. Phys. Solids 50 (2002) p. 955.

    Article  CAS  Google Scholar 

  6. O.B. Olurin, N.A. Fleck, and M.F. Ashby, Scripta Mater. 43 (2000) p. 983.

    Article  CAS  Google Scholar 

  7. P.R. Onck and A.-F. Bastawros, in Advances in Mechanical Behaviour, Plasticity and Damage, edited by D. Miannay, P. Costa, D. Francois, and A. Pineau (Elsevier, Amsterdam, 2000) p. 717.

  8. P.R. Onck, A.A. Maki, and A.-F. Bastawros (unpublished manuscript).

  9. O.B. Olurin, N.A. Fleck, and M.F. Ashby, Mater. Sci. Eng., A 291 (2000) p. 136.

    Article  Google Scholar 

  10. E.W. Andrews and L.J. Gibson, Scripta Mater. 44 (2001) p. 1005.

    Article  CAS  Google Scholar 

  11. C. Motz and R. Pippan, Acta Mater. 49 (2001) p. 2463.

    Article  CAS  Google Scholar 

  12. Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenestedt, and A.G. Evans, Acta Mater. 45 (1997) p. 5245.

    Article  CAS  Google Scholar 

  13. A. Paul, T. Seshacharyulu, and U. Rama-murty, Scripta Mater. 40 (1999) p. 809.

    Article  CAS  Google Scholar 

  14. P.R. Onck, E.W. Andrews, and L.J. Gibson, Int. J. Mech. Sci. 34 (2000) p. 681.

    Google Scholar 

  15. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  16. C. Chen, T.J. Lu, and N.A. Fleck, J. Mech. Phys. Solids 47 (1999) p. 2235.

    Article  CAS  Google Scholar 

  17. P.R. Onck, J. Phys. IV 11 (2001) p. 211.

    Google Scholar 

  18. E.W. Andrews and L.J. Gibson, Acta Mater. 49 (2001) p. 2975.

    Article  CAS  Google Scholar 

  19. E.W. Andrews and L.J. Gibson, Mater. Lett. 57 (3) (2002) p. 53.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onck, P.R. Scale Effects in Cellular Metals. MRS Bulletin 28, 279–283 (2003). https://doi.org/10.1557/mrs2003.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.81

Keywords

Navigation