Skip to main content
Log in

Electrical Spin Injection and Transport in Semiconductor Spintronic Devices

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Semiconductor heterostructures that utilize carrier spin as a new degree of freedom offer entirely new functionality and enhanced performance over conventional devices. We describe the essential requirements for implementing this technology, focusing on the materials and interface issues relevant to electrical spin injection into a semiconductor. These are discussed and illustrated in the context of several prototype semiconductor spintronic devices, including spin-polarized light-emitting diodes and resonant tunneling structures such as the resonant interband tunneling diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S.P. Wong, D.J. Frank, P.M. Solomon, C.H.J. Wann, and J.J. Welser, Proc. IEEE, Vol. 87 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1999) p. 537.

    Article  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294 (2001) p. 1488.

    Article  CAS  Google Scholar 

  3. B.T. Jonker, Proc. IEEE, Vol. 91 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) p. 727.

    Article  CAS  Google Scholar 

  4. D.P. DiVincenzo, Science 269 (1995) p. 255.

    Article  Google Scholar 

  5. S. Datta and B. Das, Appl. Phys. Lett. 56 (1990) p. 665.

    Article  CAS  Google Scholar 

  6. P. Bruno and J. Wunderlich, J. Appl. Phys. 84 (1998) p. 978.

    Article  CAS  Google Scholar 

  7. H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73 (1998) p. 363.

    Article  CAS  Google Scholar 

  8. E.A. de Andrada e Silva and G.C. La Rocca, Phys. Rev. B 59 (1999) p. R15583.

    Article  Google Scholar 

  9. T. Hayashi, M. Tanaka, and A. Asamitsu, J. Appl. Phys. 87 (2000) p. 4673.

    Article  CAS  Google Scholar 

  10. Th. Gruber, M. Keim, R. Fiederling, G. Reuscher, W. Ossau, G. Schmidt, L. Molenkamp, and A. Waag, Appl. Phys. Lett. 78 (2001) p. 1101.

    Article  CAS  Google Scholar 

  11. T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88 126601 (2002).

    Article  CAS  Google Scholar 

  12. A.F. Morpurgo, J.P. Heida, T.M. Klapwijk, B.J. van Wees, and G. Borghs, Phys. Rev. Lett. 80 (1998) p. 1050.

    Article  CAS  Google Scholar 

  13. J. Nitta, F. Meijer, Y. Narita, and H. Takayanagi, Physica E 6 (2000) p. 318.

    Article  CAS  Google Scholar 

  14. B.T. Jonker, U.S. Patent No. 5,874,749 (February 23, 1999).

    Google Scholar 

  15. A.G. Petukhov, A.N. Chantis, and D.O. Demchenko, Phys. Rev. Lett. 89 107205 (2002).

    Article  CAS  Google Scholar 

  16. D. Hägele, M. Oestreich, W.W. Rühle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73 (1998) p. 1580.

    Article  Google Scholar 

  17. J.M. Kikkawa and D.D. Awschalom, Nature 397 (1999) p. 139.

    Article  CAS  Google Scholar 

  18. J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80 (1998) p. 4313.

    Article  CAS  Google Scholar 

  19. R.I. Dzhioev, K.V. Kavokin, V.L. Korenev, M.V. Lazarev, B.Ya. Meltser, M.N. Stepanova, B.P. Zakharchenya, D. Gammon, and D.S. Katzer, Phys. Rev. B 66 245204 (2002).

    Article  CAS  Google Scholar 

  20. Y.Q. Jia, R.C. Shi, and S.Y. Chou, IEEE Trans. Magn. 32 (1996) p. 4707.

    Article  CAS  Google Scholar 

  21. A. Hirohata, Y.B. Xu, C.M. Guertler, J.A.C. Bland, and S.N. Holmes, Phys. Rev. B 63 104425 (2001).

    Article  CAS  Google Scholar 

  22. J.E. Hirsch, Phys. Rev. Lett. 83 (1999) p. 1834.

    Article  CAS  Google Scholar 

  23. S. Zhang, Phys. Rev. Lett. 85 (2000) p. 393.

    Article  CAS  Google Scholar 

  24. F. Meier and B.P. Zakharchenya, Optical Orientation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  25. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures, Chapter 11 (Academic Press, New York, 1991).

    Book  Google Scholar 

  26. J.K. Furdyna and J. Kossut, eds., Diluted Magnetic Semiconductors, Semiconductors, and Semimetals, Vol. 25, edR.K. Willardson and A.C. Beer, series editors (Academic Press, New York, 1988).

  27. M. Jain, Diluted Magnetic Semiconductors (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  28. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature 402 (1999) p. 787.

    Article  Google Scholar 

  29. B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62 (2000) p. 8180.

    Article  CAS  Google Scholar 

  30. B.T. Jonker, A.T. Hanbicki, Y.D. Park, G. Itskos, M. Furis, G. Kioseoglou, A. Petrou, and X. Wei, Appl. Phys. Lett. 79 (2001) p. 3098. See also Nature Physics Portal: “Spintronics Quantified,” http://www.nature.com/physics/highlights/6860-3.html (accessed July 2003).

    Article  CAS  Google Scholar 

  31. Y.D. Park, B.T. Jonker, B.R. Bennett, G. Itskos, M. Furis, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 77 (2000) p. 3989.

    Article  CAS  Google Scholar 

  32. R.M. Stroud, A.T. Hanbicki, Y.D. Park, G. Kioseoglou, A.G. Pethukov, B.T. Jonker, G. Itskos, and A. Petrou, Phys. Rev. Lett. 89 166602 (2002).

    Article  CAS  Google Scholar 

  33. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287 (2000) p. 1019.

    Article  CAS  Google Scholar 

  34. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63 195205 (2001).

    Article  CAS  Google Scholar 

  35. M. Kohda, Y. Ohno, K. Takamura, F. Matsukura, and H. Ohno, Jpn. J. Appl. Phys., Part 2: Lett.40 (2001) p. L1274.

    Article  CAS  Google Scholar 

  36. E. Johnston-Halperin, D. Lofgreen, R.K. Kawakami, D.K. Young, L. Coldren, A.C. Gossard, and D.D. Awschalom, Phys. Rev. B 65 041306(R) (2002).

    Article  CAS  Google Scholar 

  37. M. Tanaka and Y. Higo, Phys. Rev. Lett. 87 026602 (2001).

    Article  CAS  Google Scholar 

  38. S.H. Chun, H.J. Potashnik, K.C. Ku, P. Schiffer, and N. Samarth, Phys. Rev. B 66 100408(R) (2002).

    Article  CAS  Google Scholar 

  39. Y.D. Park, A.T. Hanbicki, J.E. Mattson, and B.T. Jonker, Appl. Phys. Lett. 81 (2002) p. 1471.

    Article  CAS  Google Scholar 

  40. P.R. Hammar, B.R. Bennett, M.J. Yang, and M. Johnson, Phys. Rev. Lett. 83 (1999) p. 203.

    Article  CAS  Google Scholar 

  41. C.-M. Hu, J. Nitta, A. Jensen, J.B. Hansen, and H. Takanayagi, Phys. Rev. B 63 125333 (2001).

    Article  CAS  Google Scholar 

  42. S. Gardelis, C.G. Smith, C.H.W. Barnes, E.H. Linfield, and D.A. Ritchie, Phys. Rev. B 60 (1999) p. 7764.

    Article  CAS  Google Scholar 

  43. F.G. Monzon, H.X. Tang, and M.L. Roukes, Phys. Rev. Lett. 84 (2000) p. 5022.

    Article  CAS  Google Scholar 

  44. B.J. van Wees, Phys. Rev. Lett. 84 (2000) p. 5023.

    Article  Google Scholar 

  45. A.T. Filip, B.H. Hoving, F.J. Jedema, B.J. van Wees, B. Dutta, and S. Borghs, Phys. Rev. B 62 (2000) p. 9996.

    Article  CAS  Google Scholar 

  46. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and B.J. van Wees, Phys. Rev. B 62 (2000) p. R4790.

    Article  CAS  Google Scholar 

  47. D.L. Smith and R.N. Silver, Phys. Rev. B 64 045323 (2001).

    Article  CAS  Google Scholar 

  48. A. Fert and H. Jaffres, Phys. Rev. B 64 184420 (2001).

    Article  CAS  Google Scholar 

  49. Z.G. Yu and M. Flatte, Phys. Rev. B 66 201202(R) (2002).

    Article  CAS  Google Scholar 

  50. R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50 (1983) p. 2024.

    Article  Google Scholar 

  51. W.E. Pickett and J.S. Moodera, Phys. Today 54 (5) (2001) p. 39.

    Article  CAS  Google Scholar 

  52. D. Orgassa, H. Fujiwara, T.C. Schulthess, and W.H. Butler, Phys. Rev. B 60 (1999) p. 13237.

    Article  CAS  Google Scholar 

  53. E.I. Rashba, Phys. Rev. B 62 (2000) p. R16267.

    Article  CAS  Google Scholar 

  54. R. Meservey and P.M. Tedrow, Phys. Rep. 238 (1994) p. 173.

    Article  Google Scholar 

  55. J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Phys. Rev. Lett. 74 (1995) p. 3723.

    Article  Google Scholar 

  56. P. Clark, EE Times (February 9, 2001) p. 14.

    Google Scholar 

  57. M. Ilegems, in The Technology and Physics of Molecular Beam Epitaxy, edited by E.H.C. Parker (Plenum Publishers, New York, 1985) p. 119.

  58. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p. 294.

    Google Scholar 

  59. A.T. Hanbicki, B.T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80 (2002) p. 1240.

    Article  CAS  Google Scholar 

  60. A.T. Hanbicki, O.M.J. van’t Erve, R. Magno, G. Kioseoglou, C.H. Li, B.T. Jonker, G. Itskos, R. Mallory, M. Yasar, and A. Petrou, Appl. Phys. Lett. 82 (2003) p. 4092.

    Article  CAS  Google Scholar 

  61. J.D. Albrecht and D.L. Smith, Phys. Rev. B 66 113303 (2002).

    Article  CAS  Google Scholar 

  62. H.J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K.H. Ploog, Phys. Rev. Lett. 87 016601 (2001).

    Article  CAS  Google Scholar 

  63. M. Ramsteiner, H.Y. Hao, A. Kawaharazuka, H.-J. Zhu, M. Kästner, R. Hey, L. Däweritz, H.T. Grahn, and K.H. Ploog, Phys. Rev. B 66 081304R (2002).

    Article  CAS  Google Scholar 

  64. T. Manago and H. Akinaga, Appl. Phys. Lett. 81 (2002) p. 694.

    Article  CAS  Google Scholar 

  65. V.N. Motsnyi, J. De Boeck, J. Das, W. Van Roy, G. Borghs, E. Goovaerts, and V.I. Safarov, Appl. Phys. Lett. 81 (2002) p. 265.

    Article  CAS  Google Scholar 

  66. M.I. Dyakonov, V.I. Perel, V.L. Berkovits, and V.I. Safarov, Sov. Phys. JETP 40 (1975) p. 950.

    Google Scholar 

  67. R. Landauer, Philos. Mag. 21 (1970) p. 863.

    Article  CAS  Google Scholar 

  68. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31 (1985) p. 6207.

    Article  Google Scholar 

  69. H.U. Baranger and A.D. Stone, Phys. Rev. B 40 (1989) p. 8169.

    Article  CAS  Google Scholar 

  70. J.M. MacLaren, X.-G. Zhang, W.H. Butler, and X. Wang, Phys. Rev. B 59 (1999) p. 5470.

    Article  CAS  Google Scholar 

  71. S. Sanvito and N.A. Hill, Phys. Rev. Lett. 87 267202 (2001).

    Article  CAS  Google Scholar 

  72. O. Wunnicke, Ph. Mavropoulos, R. Zeller, P.H. Dederichs, and D. Grundler, Phys. Rev. B 65 241306(R) (2002)

    Article  CAS  Google Scholar 

  73. O. Wunnicke, P. Mavropoulos, and P.H. Dederichs, J. Supercond./Novel Magn. 16 (2003) p. 171.

    Article  CAS  Google Scholar 

  74. M. Zwierzycki, K. Xia, P.J. Kelly, G.E.W. Bauer, and I. Turek, Phys. Rev. B 67 092401 (2003).

    Article  CAS  Google Scholar 

  75. B.T. Jonker, in Ultrathin Magnetic Structures IV: Spintronics, edited by J.A.C. Bland and B. Heinrich (Springer-Verlag, Berlin) in press.

  76. R.M. Stroud (unpublished).

  77. S.C. Erwin, S.-H. Lee, and M. Scheffler, Phys. Rev. B 65 205422 (2002).

    Article  CAS  Google Scholar 

  78. P.C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58 (1987) p. 2271.

    Article  Google Scholar 

  79. K.M. Schep, J.B.A.N. van Hoof, P.J. Kelly, G.E.W. Bauer, and J.E. Inglesfield, Phys. Rev. B 56 (1997) p. 10805.

    Article  CAS  Google Scholar 

  80. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  81. D.E. Brehmer, K. Zhang, Ch.J. Schwarz, S.-P. Chau, S.J. Allen, J.P. Ibbetson, J.P. Zhang, C.M. Palmstrøm, and B. Wilkens, Appl. Phys. Lett. 67 (1995) p. 1268

    Article  CAS  Google Scholar 

  82. A.G. Petukhov, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 53 (1996) p. 3646.

    Article  CAS  Google Scholar 

  83. J.C. Slonczewski, Phys. Rev. B 39 (1989) p. 6995.

    Article  CAS  Google Scholar 

  84. M. Jullière, Phys. Lett. 54A (1975) p. 225.

    Article  Google Scholar 

  85. D.A. Stewart and M. van Schilfgaarde, J. Appl. Phys. 93 (2003) p. 7355.

    Article  CAS  Google Scholar 

  86. A.G. Petukhov, D.O. Demchenko, and A.N. Chantis, to appear in Phys. Rev. B (2003), preprint available on the arXiv.org archive as http://arXiv.org/abs/cond-mat/0211300(accessed September 2003).

    Google Scholar 

  87. R.R. Marquardt, D.A. Collins, Y.X. Liu, Z.-Y. Ting, and T.C. McGill, Phys. Rev. B 53 (1996) p. 13624.

    Article  CAS  Google Scholar 

  88. F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87 (2000) p. 6442.

    Article  CAS  Google Scholar 

  89. X. Chen, M. Na, M. Cheon, S. Wang, H. Luo, B.D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, S.J. Potashnik, and P. Schiffer, Appl. Phys. Lett. 81 (2002) p. 511.

    Article  CAS  Google Scholar 

  90. S.A. Crooker, D.A. Tulchinsky, J. Levy, D.D. Awschalom, R. Garcia, and N. Samarth, Phys. Rev Lett. 75 (1995) p. 505

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonker, B.T., Erwin, S.C., Petrou, A. et al. Electrical Spin Injection and Transport in Semiconductor Spintronic Devices. MRS Bulletin 28, 740–748 (2003). https://doi.org/10.1557/mrs2003.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.216

Keywords

Navigation