Skip to main content

Advertisement

Log in

Halide perovskite photovoltaics: History, progress, and perspectives

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Since the first report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and 500 h stability, research on perovskite photovoltaics has unprecedentedly and exponentially increased. Currently, certified PCE for perovskite solar cells tops 22.7%, which surpasses the PCEs of conventional thin-film solar cells. Perovskite solar cells are thus a disruptive technology in photovoltaics due to their low cost and superb performance. In this article, the emergence of PSCs is introduced, and an overview of progress in our laboratory is presented. In addition, future research directions that could lead to higher efficiencies are described. Beyond photovoltaic applications of halide perovskites, results for light-emitting diodes, resistive memories, and x-ray imaging are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. E. Rogers, Diffusion of Innovations, 5th ed. (Simon and Schuster, New York, 2003).

    Google Scholar 

  2. National Renewable Energy Laboratory, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg/ncpv/images/efficiency_chart.jpg (accessed April 10, 2018).

  3. International Technology Roadmap for Photovoltaic (ITRPV) 2017 Results, 9th ed. (2018).

  4. http://www.eia.gov/outlooks/aeo/index.cfmoutlooks/aeo/index.cfm.

  5. http://www.nrel.gov/pv/assets/images/efficiency-chart.pngpv/assets/images/efficiency-chart.png.

  6. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Adv. Energy Mater. 5, 1501310 (2015).

    Google Scholar 

  7. M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Science 358, 745 (2017).

    Google Scholar 

  8. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012).

    Google Scholar 

  9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  10. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 3, 4088 (2011).

    Google Scholar 

  11. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 9, 927 (2014).

    Google Scholar 

  12. S. Mastroianni, F.D. Heinz, J.-H. Im, W. Veurman, M. Padilla, M.C. Schubert, U. Würfel, M. Grätzel, N.-G. Park, A. Hinsch, Nanoscale 7, 19653 (2015).

    Google Scholar 

  13. N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 137, 8696 (2015).

    Google Scholar 

  14. D.-Y. Son, J.-W. Lee, Y.J. Choi, I.-H. Jang, S. Lee, P.J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N.-G. Park, Nat. Energy 1, 1 (2016).

    Google Scholar 

  15. J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, Adv. Mater. 26, 4991 (2014).

    Google Scholar 

  16. J.-H. Im, J. Luo, M. Franckevicius, N. Pellet, P. Gao, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, N.-G. Park, Nano Lett. 15, 2120 (2015).

    Google Scholar 

  17. N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 1, 16152 (2016).

    Google Scholar 

  18. H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert, N.-G. Park, J. Phys. Chem. Lett. 6, 4633 (2015).

    Google Scholar 

  19. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, S. Priya, J. Phys. Chem. Lett. 6, 4693 (2015).

    Google Scholar 

  20. J. Chen, D. Lee, N.-G. Park, ACS Appl. Mater. Interfaces 9, 36338 (2017).

    Google Scholar 

  21. J. Chen, J.-Y. Seo, N.-G. Park, Adv. Energy Mater. (2018), doi: 10.1002/aenm.201702714.

  22. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, D. Lee, H. Shin, N.-G. Park, J. Am. Chem. Soc. 140, 1358 (2018).

    Google Scholar 

  23. J.-W. Lee, Y.J. Choi, J.-M. Yang, S. Ham, S.K. Jeon, J.Y. Lee, Y.-H. Song, E.K. Ji, D.-H. Yoon, S. Seo, H. Shin, G.S. Han, H.S. Jung, D. Kim, N.-G. Park, ACS Nano 11, 3311 (2017).

    Google Scholar 

  24. Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y.S. Choi, I.T. Han, S.Y. Lee, N.-G. Park, Nature 550, 87 (2017).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System) and NRF-2016M3D1A1027663 and NRF-2016M3D1A1027664 (Future Materials Discovery Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Gyu Park.

Additional information

The following article is based on a Symposium X (Frontiers of Materials Research) presentation given at the 2017 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, NG. Halide perovskite photovoltaics: History, progress, and perspectives. MRS Bulletin 43, 527–533 (2018). https://doi.org/10.1557/mrs.2018.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.152

Navigation