Skip to main content
Log in

Industrial applications of ultrafast laser processing

  • Ultrafast Laser Synthesis and Processing of Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Industrial ultrafast lasers are a key component of many new industrial manufacturing processes. The virtually athermal nature of the laser–matter interaction process enables high-quality material processing for many different materials with feature size reaching into the nanometer scale. Advances in laser average power and beam-delivery technology have significantly improved the throughput and productivity of real-life industrial and medical applications. In this article, we present key examples of laser processing, including drilling, cutting, and surface processing. In particular, we describe how ultrafast lasers can improve vision in patients, extend battery lifetime, improve the efficiency of solar cells and infrared detectors, or be applied in the printing or microelectronics industries. These examples demonstrate how further developments rely on a combination of laser technology, beam handling and delivery, and laser–matter interaction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Opt. Lett. 35, 94 (2010).

    Article  Google Scholar 

  2. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M.A. Ahmed, T. Graf, Opt. Express 23, 21064 (2015).

    Article  CAS  Google Scholar 

  3. P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Opt. Lett. 35, 4169 (2010).

    Article  CAS  Google Scholar 

  4. X. Liu, Proc. SPIE Int. Soc. Opt. Eng. 5713 (2005), p. 372.

  5. H.P. Herzig, Ed., Micro-Optics: Elements, Systems and Applications (CRC Press, Philadelphia, 1997).

  6. JMS PCB Report 2015, http://www.jms21.co.jp/english.ver/report/syoseki/2015report/PCB2015.pdf.

  7. D.S. Finn, Z. Lin, J. Kleinert, M.J. Darwin, H. Zhang, J. Laser Appl. 27, 032004 (2015), doi:10.2351/1.4916979.

  8. H. Zhang, “Laser Based Micro Fabrication Systems for Electronics Packaging,” presented at Semicon, Taiwan, September 7–9, 2016.

  9. H. Zhang, “Laser Processing Enables Smaller, Faster Mobile Devices,” Industrial Laser Solutions 30 (3) (2015), http://www.industrial-lasers.com/articles/print/volume-30/issue-3/features/laser-processing-enables-smaller-faster-mobile-devices.html.

  10. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996).

    Article  Google Scholar 

  11. P. Bechtold, R. Hohenstein, M. Schmidt, Opt. Lett. 38, 2934 (2013).

    Article  Google Scholar 

  12. D. Cutler, R. Pailthorp, M. Unrath, T. Richardson, A. Cable, “Multi-Tool Positioning System,” US Patent 5,847,960 (1998).

  13. H. Zhang, C. Yang, M.A. Unrath, M. Orrick, US Patent Application US20160250714A1.

  14. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008).

    Article  CAS  Google Scholar 

  15. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24 (4), 042006 (2012).

  16. A.Y. Vorobyev, C. Guo, Laser Photon. Rev. 7 (3), 385 (2013).

  17. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998).

    Article  CAS  Google Scholar 

  18. M. Shen, J.E. Carey, C.H. Crouch, M. Kandyla, H.A. Stone, E. Mazur, Nano Lett. 8, 2087 (2008).

    Article  CAS  Google Scholar 

  19. T. Sarnet, J.E. Carey, E. Mazur, AIP Conf. Proc. 1464 (2012), p. 219.

  20. M.-J. Sher, M.T. Winkler, E. Mazur, MRS Bull. 36 (6), 439 (2011).

  21. B. Franta, M.-J. Sher, Y.-T. Lin, K.C. Phillips, E. Mazur, Proc. SPIE Int. Soc. Opt. Eng. 8243, 82431D (2012).

  22. Z. Huang, J.E. Carey, M. Liu, X. Guo, E. Mazur, J.C. Campbell, Appl. Phys. Lett. 89 (3), 033506 (2006).

  23. Y.-T. Lin, N. Mangan, S. Marbach, T.M. Schneider, G. Deng, S. Zhou, M.P. Brenner, E. Mazur, Appl. Phys. Lett. 106 (6), 062105 (2015).

  24. X. Luo, S. Zhang, S.-H. Wei, Phys. Rev. Lett. 90 (2), 026103 (2003).

  25. J.B. Goodenough, Y. Kim, Chem. Mater. 22 (3), 587 (2010).

  26. B. Scrosati, J. Garche, J. Power Sources 195 (9), 2419 (2010).

  27. A. Amatucci, A.D. Pasquier, A. Blyr, T. Zheng, J.-M. Tarascon, Electrochim. Acta 45, 255 (1999).

    Article  CAS  Google Scholar 

  28. D.L. Wood, J.L. Li, C. Daniel, J. Power Sources 275, 234 (2015).

    Article  CAS  Google Scholar 

  29. M. Singh, J. Kaiser, H. Hahn, J. Electrochem. Soc. 162 (7), A1196 (2015).

  30. W. Pfleging, J. Pröll, J. Mater. Chem. A 2 (36), 14918 (2014).

  31. M. Mangang, H.J. Seifert, W. Pfleging, J. Power Sources 304, 24 (2016), http://dx.doi.org/10.1016/j.jpowsour.2015.10.086.

  32. J. Proll, H. Kim, A. Pique, H.J. Seifert, W. Pfleging, J. Power Sources 255, 116 (2014).

    Article  Google Scholar 

  33. P. Smyrek, J. Proll, H.J. Seifert, W. Pfleging, J. Electrochem. Soc. 163 (2), A19 (2016).

  34. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chem. Rev. 104 (10), 4463 (2004).

  35. P.H.L. Notten, F. Roozeboom, R.A.H. Niessen, L. Baggetto, Adv. Mater. 19 (24), 4564 (2007).

  36. J.F.M. Oudenhoven, L. Baggetto, PH.L. Notten, Adv. Energy Mater. 1 (1), 10 (2011).

  37. S. Ferrari, M. Loveridge, S.D. Beattie, M. Jahn, R.J. Dashwood, R. Bhagat, J. Power Sources 286, 25 (2015).

    Article  CAS  Google Scholar 

  38. P. Smyrek, J. Pröll, J.H. Rakebrandt, H.J. Seifert, W. Pfleging, Proc. SPIE Int. Soc. Opt. Eng. 9351, 93511D (2015).

    Google Scholar 

  39. W. Pfleging, M. Mangang, Y. Zheng, P. Smyrek, J. Pröll, LIA Today 24, 12 (2016).

    Google Scholar 

  40. W. Pfleging, Y. Zheng, M. Mangang, M. Bruns, P. Smyrek, Proc. SPIE Front. Ultrafast Opt. Biomed., Sci., Ind. Appl. XVI 9740 (2016). doi:10.1117/12.2212041.

  41. G.D. Kymionis, V.P Kankariya, A.D. Plaka, D.Z. Reinstein, J. Refract Surg. 28 (12), 912 (2012).

  42. R. Shah, S. Shah, S. Sengupta, J. Cataract Refract. Surg. 37 (1), 127 (2011).

  43. K.E. Donaldson, R. Braga-Mele, F. Cabot, R. Davidson, D.K. Dhaliwal, R. Hamilton, M. Jackson, L. Patterson, K. Stonecipher, S.H. Yoo, ASCRS Refractive Cataract Surgery Subcommittee, J. Cataract Refract. Surg. 39 (11) 1753(2013).

Download references

Acknowledgements

Karlsruhe Institute of Technology has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement No. 644971. In addition, the support for laser processing of batteries by the Karlsruhe Nano Micro Facility (http://www.knmf.kit.edu//), a Helmholtz research infrastructure at KIT is gratefully acknowledged. R.S acknowledges support from the Swedish Research Council (VR) for his international postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Mottay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottay, E., Liu, X., Zhang, H. et al. Industrial applications of ultrafast laser processing. MRS Bulletin 41, 984–992 (2016). https://doi.org/10.1557/mrs.2016.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.275

Navigation