Skip to main content
Log in

Is silicene the next graphene?

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews silicene, a relatively new allotrope of silicon, which can also be viewed as the silicon version of graphene. Graphene is a two-dimensional material with unique electronic properties qualitatively different from those of standard semiconductors such as silicon. While many other two-dimensional materials are now being studied, our focus here is solely on silicene. We first discuss its synthesis and the challenges presented. Next, a survey of some of its physical properties is provided. Silicene shares many of the fascinating properties of graphene, such as the so-called Dirac electronic dispersion. The slightly different structure, however, leads to a few major differences compared to graphene, such as the ability to open a bandgap in the presence of an electric field or on a substrate, a key property for digital electronics applications. We conclude with a brief survey of some of the potential applications of silicene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  2. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Google Scholar 

  3. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994).

    Google Scholar 

  4. H. Nakano, M. Ishii, H. Nakamura, Chem. Commun. 23, 2945 (2005).

    Google Scholar 

  5. H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, H. Nakamura, Angew. Chem. 118, 6451 (2006).

    Google Scholar 

  6. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007).

    Google Scholar 

  7. A. Kara, C. Léandri, M.E. Dávila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, J. Supercond. Novel Magn. 22, 259 (2009).

    Google Scholar 

  8. H. Okamoto, Y. Kumai, Y. Sugiyama, T. Mitsuoka, K. Nakanishi, T. Ohta, H. Nozaki, S. Yamaguchi, S. Shirai, H. Nakano, J. Am. Chem. Soc. 132, 2710 (2010).

    Google Scholar 

  9. Y. Sugiyama, H. Okamoto, T. Mitsuoka, T. Morikawa, K. Nakanishi, T. Ohta, H. Nakano, J. Am. Chem. Soc. 132, 5946 (2010).

    Google Scholar 

  10. C. Zhang, S. Yan, J. Phys. Chem. C 116, 4163 (2012).

    Google Scholar 

  11. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).

    Google Scholar 

  12. C.L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5, 045802 (2012).

    Google Scholar 

  13. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 12, 3507 (2012).

    Google Scholar 

  14. D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, A. Molle, Adv. Mater. 24, 5088 (2012).

    Google Scholar 

  15. H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J.Y. Hoarau, B. Aufray, J.P. Bibérian, J. Phys. Condens. Matter 24, 172001 (2012).

    Google Scholar 

  16. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura,Phys. Rev. Lett. 108, 245501 (2012).

  17. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, Hong-Jun Gao, Nano Lett. 13, 685 (2013).

    Google Scholar 

  18. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    Google Scholar 

  19. E. Durgun, S. Tongay, S. Ciraci, Phys. Rev. B 72, 075420 (2005).

    Google Scholar 

  20. D. Kaltsas, L. Tsetseris, Phys. Chem. Chem. Phys. 24, 9710 (2013).

    Google Scholar 

  21. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010).

    Google Scholar 

  22. H. Enriquez, S. Vizzini, A. Kara, B. Lalmi, H. Oughaddou, J. Phys. Condens. Matter 24, 314211 (2012).

    Google Scholar 

  23. D. Kaltsas, L. Tsetseris, A. Dimoulas, J. Phys. Condens. Matter 24, 442001 (2012).

    Google Scholar 

  24. J.F. Gao, J.J. Zhao, Sci. Rep. 2, 861 (2012).

    Google Scholar 

  25. R. Arafune, C.L. Lin, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Surf. Sci. 608, 297 (2013).

    Google Scholar 

  26. S. Huang, W. Kang, L. Yang, Appl. Phys. Lett. 102, 133106 (2013).

    Google Scholar 

  27. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Aktürk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009).

    Google Scholar 

  28. S. Wang, J. Phys. Soc. Jpn. 79, 064602 (2010).

    Google Scholar 

  29. H. Zhao, Phys. Lett. A 376, 3546 (2012).

    Google Scholar 

  30. G. Liu, M.S. Wu, C.Y. Ouyang, B. Xu, Europhys. Lett. 99, 17010 (2012).

    Google Scholar 

  31. R. Qin, C.H. Wang, W. Zhu, Y. Zhang, AIP Adv. 2, 022159 (2012).

    Google Scholar 

  32. L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012).

    Google Scholar 

  33. L. Chen, H. Li, B. Feng, Z. Ding, J. Qiu, P. Cheng, K. Wu, S. Meng, Phys. Rev. Lett. 110, 085504 (2013).

    Google Scholar 

  34. Z. Guo, S. Furuya, J. Iwata, A. Oshiyama, Phys. Rev. B 87, 235435 (2013).

    Google Scholar 

  35. C.L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Phys. Rev. Lett. 110, 076801 (2013).

    Google Scholar 

  36. Y.-P. Wang, H.-P. Cheng, Phys. Rev. B 87, 245430 (2013).

    Google Scholar 

  37. J. Avila, P. de Padova, S. Cho, I. Colambo, S. Lorcy, C. Quaresima, P. Vogt, A. Resta, G. Le Lay, M.C. Asensio, J. Phys. Condens. Matter 25, 262001 (2013).

    Google Scholar 

  38. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu,J. Lu, Nano Lett. 12, 113 (2012).

    Google Scholar 

  39. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012).

    Google Scholar 

  40. C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).

    Google Scholar 

  41. M. Ezawa, Eur. J. Phys. B 85, 1 (2012).

    Google Scholar 

  42. M. Ezawa, New. J. Phys. 14, 033003 (2012).

    Google Scholar 

  43. A. Dyrdal, J. Barnaś, Phys. Status Solidi RRL 6, 340 (2012).

    Google Scholar 

  44. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).

    Google Scholar 

  45. M. Ezawa, Phys. Rev. B 87, 155415 (2013).

    Google Scholar 

  46. C.J. Tabert, E.J. Nicol, Phys. Rev. Lett. 110, 197402 (2013).

    Google Scholar 

  47. A.J. Lu, X.B. Yang, R.Q. Zhang, Solid State Commun. 149, 153 (2009).

    Google Scholar 

  48. O. Pulci, P. Gori, M. Marsili, V. Garbuio, R. Del Sole, F. Bechstedt, Europhys. Lett. 98, 37004 (2012).

    Google Scholar 

  49. F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Appl. Phys. Lett. 100,261906 (2012).

  50. W. Wei, Y. Dai, B. Huang, T. Jacob, Phys. Chem. Chem. Phys. 15, 8789 (2013).

    Google Scholar 

  51. L.C. Lew Yan Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Appl. Phys. Lett. 97, 163114 (2010).

    Google Scholar 

  52. J.C. Garcia, D.B. de Lima, L.V.C. Assali, J.F. Justo, J. Phys. Chem. C 115, 13242 (2011).

    Google Scholar 

  53. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011).

    Google Scholar 

  54. D. Jose, A. Datta, Phys. Chem. Chem. Phys. 13, 7304 (2011).

    Google Scholar 

  55. Y. Ding, J. Ni, Appl. Phys. Lett. 100, 083102 (2012).

    Google Scholar 

  56. X.-Q. Wang, H.-D. Li, J.-T. Wang, Phys. Chem. Chem. Phys. 14, 3031 (2012).

    Google Scholar 

  57. P. Zhang, X.D. Li, C.H. Hu, S.Q. Wu, Z.Z. Zu, Phys. Lett. A 376, 1230 (2012).

    Google Scholar 

  58. C. Gang, P.-F. Liu, Z.-T. Li, Chin. Phys. B 22, 046201 (2013).

    Google Scholar 

  59. F.B. Zheng C.W. Zhang, Nano. Res. Lett. 7, 422 (2012).

    Google Scholar 

  60. X. Lin, J. Ni, Phys. Rev. B 86, 075440 (2012).

    Google Scholar 

  61. H. Li, R. Zhang, Europhys. Lett. 99, 36001 (2012).

    Google Scholar 

  62. M. Hu, X. Zhang, D. Poulikakos, Phys. Rev. B 87, 195417 (2013).

    Google Scholar 

  63. M.R. Tchalala, H. Enriquez, A.J. Mayne, A. Kara, S. Roth, M.G. Silly, A. Bendounan, F. Sirotti, T. Greber, B. Aufray, G. Dujardin, M.A. Ali, H. Oughaddou, Appl. Phys. Lett. 102, 083107 (2013).

    Google Scholar 

  64. P. de Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, J. Phys. D 44, 312001 (2011).

    Google Scholar 

  65. Y. Ding, J. Ni, Appl. Phys. Lett. 95, 083115 (2009).

    Google Scholar 

  66. J. Kang, F. Wu, J. Li, Appl. Phys. Lett. 100, 233122 (2012).

    Google Scholar 

  67. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008).

    Google Scholar 

  68. M. Houssa, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 97, 112106 (2010).

    Google Scholar 

  69. H. Liu, J. Gao, J. Zhao, J. Phys. Chem. C 117, 10353 (2013).

    Google Scholar 

  70. H. Li, L. Wang, Q. Liu, J. Zheng, W.N. Mei, Z. Gao, J. Shi, J. Lu, Eur. Phys. J. B 85, 1 (2012).

    Google Scholar 

  71. M. Tahir, U. Schwingenschlogl, Sci. Rep. 3, 1 (2013).

    Google Scholar 

  72. Y. Wang, J. Zheng, Z. Ni, R. Fei, Q. Liu, R. Quhe, C. Xu, J. Zhou, Z. Gao, J. Lu, Nano 7, 1250037 (2012).

    Google Scholar 

  73. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, A. Bansil, Nat. Commun. 4, 1500 (2013).

    Google Scholar 

  74. G.A. Tritsaris, E. Kaxiras, S. Meng, E. Wang, Nano Lett. 13, 2258 (2013).

    Google Scholar 

  75. T.H. Osborn, A.A. Farajian, J. Phys. Chem. C 116, 22916 (2012).

    Google Scholar 

Download references

Acknowledgments

Our early research on silicene was partially funded by the National Science Foundation. Writing of this article was facilitated by funds from The Citadel Foundation, the Traubert Endowed Funds, and the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Lew Yan Voon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan Voon, L.C.L., Guzmán-Verri, G.G. Is silicene the next graphene?. MRS Bulletin 39, 366–373 (2014). https://doi.org/10.1557/mrs.2014.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.60

Navigation