Skip to main content
Log in

Advances in materials that enable quantitative point-of-care assays

  • Paper-based technology
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The traditional paradigm for obtaining a quantitative measurement in point-of-care (POC) assays may not be adequate for extremely resource-limited environments, such as remote villages in the developing world. In standard quantitative POC assays, sample volume and assay time must be controlled. Furthermore, thermally stable assay reagents, a power supply, and an electronic reader must be available. Arranging all of these variables in a single assay results in systems that are too complicated, expensive, and user-intensive for extremely resource-limited environments. This overview describes new approaches in various areas of materials science that are beginning to redefine how quantitative POC assays are achieved, with a focus on approaches that use paper as the platform for the assays. Such approaches should have an immediate impact in the developing world, but also may transform quantitative POC assays in a variety of other settings, where quantitative information about the health of people, plants, animals, and the environment would help individuals better assess and manage their lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E.Williams, Anal. Chem. 84, 487 (2012).

    Article  CAS  Google Scholar 

  2. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006).

    Article  CAS  Google Scholar 

  3. M. Urdea, L.A. Penny, S.S. Olmsted, M.Y. Giovanni, P. Kaspar, A. Shepherd, P. Wilson, C.A. Dahl, S. Buchsbaum, G. Moeller, D.C.H. Burgess, Nature 444(Suppl. 1 ), 73 (2006).

    Article  Google Scholar 

  4. R.W. Peeling, K.K. Holmes, D. Mabey, A. Ronald, Sex Transm. Infect. 82, 1 (2006).

    Article  Google Scholar 

  5. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7, 41 (2007).

    Article  CAS  Google Scholar 

  6. P. Yager, G.J. Domingo, J. Gerdes, Annu. Rev. Biomed. Eng. 10, 107 (2008).

    Article  CAS  Google Scholar 

  7. B. Weigl, G. Domingo, P. LaBarre, J. Gerlach, Lab Chip 8, 1999 (2008).

    Article  CAS  Google Scholar 

  8. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Anal. Chem. 82, 3 (2010).

    Article  CAS  Google Scholar 

  9. X. Li, D.R. Ballerini, W. Shen, Biomicrofluidics 6, 011301 (2012).

    Article  Google Scholar 

  10. W. Zhao, A. van den Berg, Lab Chip 8, 1988 (2008).

    Article  CAS  Google Scholar 

  11. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. Int. Ed. 46, 1318 (2007).

    Article  CAS  Google Scholar 

  12. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 105, 19606 (2008).

    Article  CAS  Google Scholar 

  13. G.G. Lewis, M.J. DiTucci, M.S. Baker, S.T. Phillips, Lab Chip 12, 2630 (2012).

    Article  CAS  Google Scholar 

  14. H. Liu, R.M. Crooks, Anal. Chem. 84, 2528 (2012).

    Article  CAS  Google Scholar 

  15. Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin, Electrophoresis 30, 1497 (2009).

    Article  CAS  Google Scholar 

  16. E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 7091 (2009).

    Article  CAS  Google Scholar 

  17. H. Noh, S.T. Phillips, Anal. Chem. 82, 4181 (2010).

    Article  CAS  Google Scholar 

  18. H. Noh, S.T. Phillips, Anal. Chem. 82, 8071 (2010).

    Article  CAS  Google Scholar 

  19. N.K. Thom, K. Yeung, M.B. Pillion, S.T. Phillips, Lab Chip 12, 1768 (2012)

    Article  CAS  Google Scholar 

  20. H. Liu, R.M. Crooks, Anal. Chem. 84, 2528 (2012).

    Article  CAS  Google Scholar 

  21. A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas III, H. Sindi G.M. Whitesides, Anal. Chem. 80, 3699 (2008).

    Article  CAS  Google Scholar 

  22. G.G. Lewis, M.J. DiTucci, S.T. Phillips, Angew. Chem. Int. Ed. 51, 12707 (2012).

    Article  CAS  Google Scholar 

  23. D.Y. Stevens, C.R. Petri, J.L. Osborn, P. Spicar-Mihalic, K.G. McKenzie P. Yager, Lab Chip 8, 2038 (2008).

    Article  CAS  Google Scholar 

  24. D.-G. Cho, J.L. Sessler, Chem. Soc. Rev. 38, 1647 (2009).

    Article  CAS  Google Scholar 

  25. H. Mohapatra, S.T. Phillips, Angew. Chem. Int. Ed. 51, 11145 (2012)

    Article  CAS  Google Scholar 

  26. M.S. Baker, S.T. Phillips, J. Am. Chem. Soc. 133, 5170 (2011).

    Article  CAS  Google Scholar 

  27. H. Mohapatra, K.M. Schmid, S.T. Phillips, Chem. Commun. 48, 3018 (2012).

    Article  CAS  Google Scholar 

  28. K. Yeung, K.M. Schmid, S.T. Phillips, Chem. Commun. 49, 394 (2013).

    Article  CAS  Google Scholar 

  29. P. Scrimin, L.J. Prins, Chem. Soc. Rev. 40, 4488 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The material in this overview is based on work supported by the Bill and Melinda Gates Foundation, the Arnold and Mabel Beckman Foundation, the Camille and Henry Dreyfus Foundation, 3M, the Alfred P. Sloan Research Fellows program, Louis Martarano, and The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, S.T., Lewis, G.G. Advances in materials that enable quantitative point-of-care assays. MRS Bulletin 38, 315–319 (2013). https://doi.org/10.1557/mrs.2013.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.57

Navigation