Skip to main content
Log in

High-performance SERS substrates: Advances and challenges

  • Surface-enhanced Raman spectroscopy: Substrates and materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) is highly dependent upon the substrate, where excitation of the localized metal surface plasmon resonance enhances the vibrational scattering signal of proximate analyte molecules. This article reviews recent progress in the fabrication of SERS substrates and the requirements for characterization of plasmonic materials as SERS platforms. We discuss bottom-up fabrication of SERS substrates and illustrate the advantages of rational control of metallic nanoparticle synthesis and assembly for hot spot creation. We also detail top-down methods, including nanosphere lithography for the preparation of tunable, highly sensitive, and robust substrates, as well as the unique benefits of tip-enhanced Raman spectroscopy for simultaneous acquisition of molecular vibrational information and high spatial resolution imaging. Finally, we discuss future prospects and challenges in SERS, including the development of surface-enhanced femtosecond stimulated Raman spectroscopy, microfluidics with SERS, creating highly reproducible substrates, and the need for reliable characterization of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S. Abalde-Cela, P. Aldeanueva-Potel, C. Mateo-Mateo, L. Rodríguez-Lorenzo, R.A. Alvarez-Puebla, L.M. Liz-Marzán, J. R. Soc. Interface 7, S435 (2010).

    Google Scholar 

  2. S.L. Kleinman, E. Ringe, N. Valley, K.L. Wustholz, E. Phillips, K.A. Scheidt, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 133, 4115 (2011).

    Google Scholar 

  3. E.C. Le Ru, M. Meyer, P.G. Etchegoin, J. Phys. Chem. B 110, 1944 (2006).

    Google Scholar 

  4. N.P.W. Pieczonka, G. Moula, R.F. Aroca, Langmuir 25, 11261 (2009).

    Google Scholar 

  5. L. Rodríguez-Lorenzo, R.A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L.M. Liz-Marzán, F.J. García de Abajo, J. Am. Chem. Soc. 131, 4616 (2009).

    Google Scholar 

  6. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today 15, 16 (2012).

    Google Scholar 

  7. M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Chem. Soc. Rev. 37, 885 (2008).

    Google Scholar 

  8. A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P. Van Duyne, S. Zou, MRS Bull. 30, 368 (2005).

    Google Scholar 

  9. S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, R.P. Van Duyne, Phys. Chem. Chem. Phys. 15, 21 (2013).

    Google Scholar 

  10. S.L. Kleinman, B. Sharma, M.G. Blaber, A.-I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 135, 301 (2013).

    Google Scholar 

  11. N.G. Greeneltch, M.G. Blaber, A.-I. Henry, G.C. Schatz, R.P. Van Duyne, Anal. Chem. (2013), doi:10.1021/ac303269w.

  12. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84, 1 (1977).

    Google Scholar 

  13. J.A. Creighton, C.G. Blatchford, M.G. Albrecht, J. Chem. Soc., Faraday Trans. II 75, 790 (1979).

    Google Scholar 

  14. P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982).

    Google Scholar 

  15. M. Jin, H. van Wolferen, H. Wormeester, A. van den Berg, E.T. Carlen, Nanoscale 4, 4712 (2012).

    Google Scholar 

  16. Y. Qiuming, B. Scott, C. Brian, X. Jiajie, M.W. Paul, G. Heng, K. Dmitry, Nanotechnology 21, 355301 (2010).

    Google Scholar 

  17. R.P. Van Duyne, J.C. Hulteen, D.A. Treichel, J. Chem. Phys. 99, 2101 (1993).

    Google Scholar 

  18. J.R. Anema, J.-F. Li, Z.-L. Yang, B. Ren, Z.-Q. Tian, Annu. Rev. Anal. Chem. 4, 129 (2011).

    Google Scholar 

  19. S.J. Barcelo, A. Kim, W. Wu, Z. Li, ACS Nano 6, 6446 (2012).

    Google Scholar 

  20. K.D. Osberg, M. Rycenga, N. Harris, A.L. Schmucker, M.R. Langille, G.C. Schatz, C.A. Mirkin, Nano Lett. 12, 3828 (2012).

    Google Scholar 

  21. S. Shim, C.M. Stuart, R.A. Mathies, ChemPhysChem 9, 697 (2008).

    Google Scholar 

  22. M. Fan, G.F.S. Andrade, A.G. Brolo, Anal. Chim. Acta 693, 7 (2011).

    Google Scholar 

  23. H. Skaff, T. Emrick, in Nanoparticles: Building Blocks for Nanotechnology, V. Rotello, Ed. (Springer, NY, 2004), p. 29.

    Google Scholar 

  24. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010).

    Google Scholar 

  25. J. Song, J. Zhou, H. Duan, J. Am. Chem. Soc. 134, 13458 (2012).

    Google Scholar 

  26. L. Wang, L. Xu, H. Kuang, C. Xu, N.A. Kotov, Acc. Chem. Res. 45, 1916 (2012).

    Google Scholar 

  27. T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, Y.C. Cao, Chem. Soc. Rev. (2013), doi:10.1039/C2CS35318K.

  28. X. Ye, C. Zheng, J. Chen, Y. Gao, C.B. Murray, Nano Lett. 13 (5), 2163 (2013).

    Google Scholar 

  29. B.E. Brinson, J.B. Lassiter, C.S. Levin, R. Bardhan, N. Mirin, N.J. Halas, Langmuir 24, 14166 (2008).

    Google Scholar 

  30. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Chem. Soc. Rev. 37, 1783 (2008).

    Google Scholar 

  31. M.R. Langille, M.L. Personick, J. Zhang, C.A. Mirkin, J. Am. Chem. Soc. 134, 14542 (2012).

    Google Scholar 

  32. X.M. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, Y.N. Xia, Annu. Rev. Phys. Chem. 60, 167 (2009).

    Google Scholar 

  33. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005).

    Google Scholar 

  34. T.K. Sau, A.L. Rogach, M. Döblinger, J. Feldmann, Small 7, 2188 (2011).

    Google Scholar 

  35. X. Xia, J. Zeng, Q. Zhang, C.H. Moran, Y. Xia, J. Phys. Chem. C 116, 21647 (2012).

    Google Scholar 

  36. M. Yang, R.A. Alvarez-Puebla, H.-S. Kim, P. Aldeanueva-Potel, L.M. Liz-Marzán, N.A. Kotov, Nano Lett. 10, 4013 (2010).

    Google Scholar 

  37. P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35, 1195 (2006).

    Google Scholar 

  38. M.F. Cardinal, B. Rodríguez-González, R.A. Alvarez-Puebla, J. Pérez-Juste, L.M. Liz-Marzán, J. Phys. Chem. C 114, 10417 (2010).

    Google Scholar 

  39. M. Gühlke, S. Selve, J. Kneipp, J. Raman Spectrosc. 43, 1204 (2012).

    Google Scholar 

  40. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, J. Mater. Chem. A 1, 20 (2013).

    Google Scholar 

  41. M. Spuch-Calvar, L. Rodríguez-Lorenzo, M.P. Morales, R.A. Álvarez-Puebla, L.M. Liz-Marzán, J. Phys. Chem. C 113, 3373 (2008).

    Google Scholar 

  42. S. Xie, M. Jin, J. Tao, Y. Wang, Z. Xie, Y. Zhu, Y. Xia, Chem. Eur. J. 18, 14974 (2012).

    Google Scholar 

  43. G. Chen, Y. Wang, L.H. Tan, M. Yang, L.S. Tan, Y. Chen, H. Chen, J. Am. Chem. Soc. 131, 4218 (2009).

    Google Scholar 

  44. G. Chen, Y. Wang, M. Yang, J. Xu, S.J. Goh, M. Pan, H. Chen, J. Am. Chem. Soc. 132, 3644 (2010).

    Google Scholar 

  45. M. Rycenga, P.H.C. Camargo, Y. Xia, Soft Matter 5, 1129 (2009).

    Google Scholar 

  46. E.C. Le Ru, M. Meyer, E. Blackie, P.G. Etchegoin, J. Raman Spectrosc. 39, 1127 (2008).

    Google Scholar 

  47. A. Otto, J. Raman Spectrosc. 33, 593 (2002).

    Google Scholar 

  48. N.G. Bastús, J. Comenge, V.C. Puntes, Langmuir 27, 11098 (2011).

    Google Scholar 

  49. J. Rodríguez-Fernández, J. Pérez-Juste, F.J. García de Abajo, L.M. Liz-Marzán, Langmuir 22, 7007 (2006).

    Google Scholar 

  50. J. Turkevich, P.C. Stevenson, J. Hillier, Disc. Faraday Soc. 11, 55 (1951).

    Google Scholar 

  51. M. Rycenga, X. Xia, C.H. Moran, F. Zhou, D. Qin, Z.-Y. Li, Y. Xia, Angew. Chem. Int. Ed. 50, 5473 (2011).

    Google Scholar 

  52. L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5, 2034 (2005).

    Google Scholar 

  53. F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed. 43, 3673 (2004).

    Google Scholar 

  54. M.Z. Liu, P. Guyot-Sionnest, J. Phys. Chem. B 109, 22192 (2005).

    Google Scholar 

  55. A. Sánchez-Iglesias, I. Pastoriza-Santos, J. Pérez-Juste, B. Rodríguez-González, F.J. GarcíadeAbajo, L.M. Liz-Marzán, Adv. Mater. 18, 2529 (2006).

    Google Scholar 

  56. T.H. Ha, H.-J. Koo, B.H. Chung, J. Phys. Chem. C 111, 1123 (2006).

    Google Scholar 

  57. J.E. Millstone, W. Wei, M.R. Jones, H. Yoo, C.A. Mirkin, Nano Lett. 8, 2526 (2008).

    Google Scholar 

  58. I. Pastoriza-Santos, L.M. Liz-Marzán, Nano Lett. 2, 903 (2002).

    Google Scholar 

  59. L. Rodríguez-Lorenzo, R.A. Álvarez-Puebla, F.J. García de Abajo, L.M. Liz-Marzán, J. Phys. Chem. C 114, 7336 (2009).

    Google Scholar 

  60. W. Niu, S. Zheng, D. Wang, X. Liu, H. Li, S. Han, J. Chen, Z. Tang, G. Xu, J. Am. Chem. Soc. 131, 697 (2008).

    Google Scholar 

  61. D. Seo, C.I. Yoo, I.S. Chung, S.M. Park, S. Ryu, H. Song, J. Phys. Chem. C 112, 2469 (2008).

    Google Scholar 

  62. L.-L. Tay, J. Hulse, D. Kennedy, J.P. Pezacki, J. Phys. Chem. C 114, 7356 (2010).

    Google Scholar 

  63. D.D. Whitmore, P.Z. El-Khoury, L. Fabris, P. Chu, G.C. Bazan, E.O. Potma, V.A. Apkarian, J. Phys. Chem. C 115, 15900 (2011).

    Google Scholar 

  64. P. Taladriz-Blanco, N.J. Buurma, L. Rodriguez-Lorenzo, J. Pérez-Juste, L.M. Liz-Marzán, P. Herves, J. Mater. Chem. 21, 16880 (2011).

    Google Scholar 

  65. E. Auyeung, R.J. Macfarlane, C.H.J. Choi, J.I. Cutler, C.A. Mirkin, Adv. Mater. 24, 5181 (2012).

    Google Scholar 

  66. S.-Y. Chen, A.A. Lazarides, J. Phys. Chem. C 113, 12167 (2009).

    Google Scholar 

  67. S. Gangwal, O.J. Cayre, O.D. Velev, Langmuir 24, 13312 (2008).

    Google Scholar 

  68. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvili, Nat. Mater. 7, 527 (2008).

    Google Scholar 

  69. A. Lukach, K. Liu, H. Therien-Aubin, E. Kumacheva, J. Am. Chem. Soc. 134, 18853 (2012).

    Google Scholar 

  70. R.A. Alvarez-Puebla, L.M. Liz-Marzán, Chem. Soc. Rev. 41, 43 (2012).

    Google Scholar 

  71. E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).

    Google Scholar 

  72. L.-J. Wan, M. Terashima, H. Noda, M. Osawa, J. Phys. Chem. B 104, 3563 (2000).

    Google Scholar 

  73. C.M. Whelan, M.R. Smyth, C.J. Barnes, Langmuir 15, 116 (1998).

    Google Scholar 

  74. N.G. Greeneltch, M.G. Blaber, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. C 8, 2554 (2013).

    Google Scholar 

  75. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109, 11279 (2005).

    Google Scholar 

  76. M.D. Arnold, M.G. Blaber, Opt. Express 17, 3835 (2009).

    Google Scholar 

  77. A.L. Schmucker, N. Harris, M.J. Banholzer, M.G. Blaber, K.D. Osberg, G.C. Schatz, C.A. Mirkin, ACS Nano 4, 5453 (2010).

    Google Scholar 

  78. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Proc. Natl. Acad. Sci. USA 105, 5844 (2008).

    Google Scholar 

  79. R.R. Frontiera, A.-I. Henry, N.L. Gruenke, R.P. Van Duyne, J. Phys. Chem. Lett. 2, 1199 (2011).

    Google Scholar 

  80. T.P. Tyler, A.-I. Henry, R.P. Van Duyne, M.C. Hersam, J. Phys. Chem. Lett. 2, 218 (2011).

    Google Scholar 

  81. Y. Fang, N.-H. Seong, D.D. Dlott, Science 321, 388 (2008).

    Google Scholar 

  82. J. McMahon, A.-I. Henry, K. Wustholz, M. Natan, R.G. Freeman, R.P. Van Duyne, G. Schatz, Anal. Bioanal. Chem. 394, 1819 (2009).

    Google Scholar 

  83. K.L. Wustholz, A.-I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 132, 10903 (2010).

    Google Scholar 

  84. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003)

    Google Scholar 

  85. M. Lucas, E. Riedo, Rev Sci. Instrum.83, 061101/1 (2012).

    Google Scholar 

  86. B. Pettinger, P. Schambach, C.J. Villagomez, N. Scott, Annu. Rev. Phys. Chem. 63, 379 (2012).

    Google Scholar 

  87. D.A. Schmidt, I. Kopf, E. Bründermann, Laser Photon. Rev. 6, 296 (2012).

    Google Scholar 

  88. J. Stadler, B. Oswald, T. Schmid, R. Zenobi, J. Raman Spectrosc. 44 227 (2013).

    Google Scholar 

  89. N. Jiang, E.T. Foley, J.M. Klingsporn, M.D. Sonntag, N.A. Valley, J.A. Dieringer, T. Seideman, G.C. Schatz, M.C. Hersam, R.P. Van Duyne, Nano Lett. 12, 5061 (2011).

    Google Scholar 

  90. M.D. Sonntag, J.M. Klingsporn, L.K. Garibay, J.M. Roberts, J.A. Dieringer, T. Seideman, K.A. Scheidt, L. Jensen, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. C 116, 478 (2011).

    Google Scholar 

  91. J. Steidtner, B. Pettinger, Phys. Rev Lett. 100, 236101/1 (2008).

    Google Scholar 

  92. R.R. Frontiera, C. Fang, J. Dasgupta, R.A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).

    Google Scholar 

  93. R.R. Frontiera, R.A. Mathies, Laser Photon. Rev 5, 102 (2011).

    Google Scholar 

  94. R.R. Frontiera, N.L. Gruenke, R.P. Van Duyne, Nano Lett. 12, 5989 (2012).

    Google Scholar 

  95. S. Berweger, M. Raschke, Anal. Bioanal. Chem. 396, 115 (2010).

    Google Scholar 

  96. D. Cialla, A. Maerz, R. Boehme, F. Theil, K. Weber, M. Schmitt, J. Popp, Anal. Bioanal. Chem. 403, 27 (2012).

    Google Scholar 

  97. T.M. Henkel, A. März, J. Popp, in Surface Enhanced Raman Spectroscopy S. Schlucker, Ed. (Springer-Verlag, Germany, 2011), p. 173.

    Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA under SSC Pacific grants N660001–11–1-4179 and HR0011–13–2-002. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of DARPA. This work was also supported by the National Science Foundation (CHE-0802913 and CHE-115247) and the Materials Research Center of Northwestern University (DMR-1121262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavya Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, B., Fernanda Cardinal, M., Kleinman, S.L. et al. High-performance SERS substrates: Advances and challenges. MRS Bulletin 38, 615–624 (2013). https://doi.org/10.1557/mrs.2013.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.161

Navigation