Skip to main content

Advertisement

Log in

Piezoelectric MEMS for energy harvesting

  • Thin-film piezoelectric MEMS
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for replacing chemical batteries or complex wiring in microsensors/microsystems, moving us closer toward battery-less autonomous sensors systems and networks. To achieve this goal, a fully assembled energy harvester the size of a US quarter dollar coin (diameter = 24.26 mm, thickness = 1.75 mm) should be able to robustly generate about 100 µW of continuous power from ambient vibrations. In addition, the cost of the device should be sufficiently low for mass scale deployment. At the present time, most of the devices reported in the literature do not meet these requirements. This article reviews the current state of the art with respect to the key challenges such as high power density and wide bandwidth of operation. This article also describes improvements in piezoelectric materials and resonator structure design, which are believed to be the solutions to these challenges. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed, and MEMS processes for these new classes of materials are being investigated. Nonlinear resonating beams for wide bandwidth resonance are also being developed to enable more robust operation of energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Priya, D. Inman, Eds., Energy Harvesting Technologies (Springer, NY, 2009).

  2. A. Chandrakasan, R. Amirtharajah, J. Goodman, W. Rabiner, Proc. of the IEEE International Symposium on Circuits and Systems, ISCAS ’98 (1998).

  3. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17 (2006).

  4. Z. Wang, J. Song, Science 312, 242 (2006).

    Google Scholar 

  5. A. Marin, S. Bressers, S. Priya, J. Phys. D: Appl. Phys. 44, 295501 (2011).

  6. D.C. Bono, A. Sliski, J. Huang, R.C. O’Handley, US Patent 7,569,952 B1, (2009).

  7. P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J. Microelectromech. Syst. 5 (4), 270 (1996).

  8. P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, MRS Bull. 34 (9) (2009).

  9. A. Hajati, S.G. Kim, Appl. Phys. Lett. 99, 083105 (2011).

  10. H.-U. Kim, W.-H. Lee, H.V. Rasika Dias, S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1555 (2009).

  11. S. Roundy, P.K. Wright, Smart Mater. Struct. 13, 1131 (2004).

  12. Y.B. Jeon, R. Sood, J.H. Jeong, S.-G. Kim, Sens. Actuators 122, 16 (2005).

  13. K. Morimoto, I. Kanno, K. Wasa, H. Kotera, Sens. Actuators, A 163, 428 (2010).

  14. H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).

  15. J. Jiang, R.N. Miles, J. Sound Vib. 220 (4), 683 (1999).

  16. D. Findeisen, System Dynamics and Mechanical Vibrations: An Introduction (Springer, NY, 2000).

  17. J.H. Ginsberg, Mechanical and Structural Vibrations: Theory and Applications (Wiley, NY, 2001).

  18. K. Uchino, Ferroelectric Devices (Marcel Dekker, NY, 2000).

  19. A. Hajati, PhD thesis, Massachusetts Institute of Technology (2010).

  20. M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, R. Puers, Sens. Actuators, A 145146, 380 (2008).

  21. S. Roundy, P.K. Wright, J.M. Rabaey, Energy Scavenging for Wireless Sensor Networks (Kluwer Academic Publishers, Boston, 2003).

  22. E.K. Reilly, L.M. Miller, R. Fain, P. Wright, Proc. PowerMEMS 312 (2009).

  23. A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).

  24. S. Roundy, P.K. Wright, J. Rabaey, Comput. Commun. 26 (11), 1131 (2003).

  25. P. Muralt, M. Marzencki, B. Belgacem, F. Calame, S. Basrour, Proc. Chem. 1, 1191 (2009).

  26. A. Massaro, S. De Guido, I. Ingrosso, R. Cingolani, M. De Vittorio, M. Cori, A. Bertacchini, L. Larcher, A. Passaseo, Appl. Phys. Lett. 98, 053502 (2011).

  27. L.M. Miller, E. Halvorsen, T. Dong, P.K. Wright, J. Micromech. Microeng. 21, 045029 (2011).

  28. H. Durou, G.A. Ardilla-Rodriguez, A. Ramond, X. Dollat, C. Rossi, D. Esteve, PowerMEMS (Leuven, Belgium, 2010).

  29. D. Isarakorn, D. Briand, P. Janphuang, A. Sambri, S. Gariglio, J.-M. Triscone, F. Guy, J.W. Reiner, C.H. Ahn, N.F. de Rooij, Smart Mater. Struct. 20 (2), (2011).

  30. M. Defosseux, M. Allain, P. Ivaldi, E. Defay, S. Basrour, Proc. of 16th International Conference on Solid-StateSensors, Actuators and Microsystems (Transducers 2011) (Beijing, China, June 2011), pp. 1859–1862.

  31. M. Marzencki, Y. Ammar, S. Basrour, Proc. Int. Conf. on Solid-State Sensors, Actuators, and Microsystems, Lyon (2007), pp. 887–890.

  32. T. Hirasawa, T.-T. Yen, P.K. Wright, A.P. Pisano, L. Lin, Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010) (Leuven, Belgium, 2010), pp. 211–214.

  33. T.-T. Yen, T. Hirasawa, P.K. Wright, A.P. Pisano, L. Lin, J. Micromech. Microeng. 21, 085037 (2011).

  34. A. Bertacchini, S. Scorcioni, D. Dondi, L. Larcher, P. Pavan, M.T. Todaro A. Campa, G. Caretto, S. Petroni, A. Passaseo, M. De Vittorio, Proceedings of the European Solid-State Device Research Conference (ESSDERC) 12–16 September 2011 ( 2011), pp. 119–122.

  35. R. van Schaijk, R. Elfrink, T.M. Kamel, M. Goedbloed, IEEE Sensors Conference (2008), pp. 45–48.

  36. R. Elfrink, V. Pop, D. Hohlfeld, T. Kamel, S. Matova, C. de Nooijer, M. Jambunathan, M. Goedbloed, L. Caballero Guindo, M. Renaud, J. Penders, R. van Schaijk, IEEE International Electron Devices Meeting (IEDM) (2009), pp. 543–546.

  37. R. Elfrink, T.M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, R. van Schaijk, J. Micromech. Microeng. 19, 095005 (2009).

  38. R. Elfrink, M. Renaud, T.M. Kamel, C. de Nooijer, M. Jambunathan, M. Goedbloed, D. Hohlfeld, S. Matova, V. Pop, L. Caballero, R. van Schaijk, J. Micromech. Microeng. 20, 104001 (2010).

  39. R. Xu, A. Lei, T.L. Christiansen, K. Hansen, M. Guizzetti, K. Birkelund E.V. Thomsen, O. Hansen, Proc. of 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’11) (Beijing, China, 2011), pp. 679–682.

  40. A. Lei, R. Xu, A. Thyssen, A.C. Stoot, T.L. Christiansen, K. Hansen, R. Lou-Møller, E.V. Thomsen, K. Birkelund, Proc. of The 24th International Conference on Micro Electro Mechanical Systems (MEMS’11) (Cancun, Mexico, 2011), pp. 125–128.

  41. J.C. Park, J.Y. Park, Y.-P. Lee, J. Microelectromech. Syst. 19 (5), 1215 (2010).

  42. H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, L. Wang, D. Chen, B.-C. Cai, Y. Liu, Microelectron. J. 37, 1280 (2006).

  43. D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H.C. Wikle III, D.-J. Kim, J. Micromech. Microeng. 18, 055017 (2008).

  44. B.S. Lee, S.C. Lin, W.J. Wu, X.Y. Wang, P.Z. Chang, C.K. Lee, J. Micromech. Microeng. 19 (6), 065014 (2009).

  45. E.E. Aktakka, PhD thesis, University of Michigan (2012).

  46. S. Priya, J. Electroceram. 19, 165 (2007).

  47. A. Marin, S. Priya, Active and Passive Smart Structures and Integrated Systems 2012, H.A. Sodano, Ed. (SPIE, San Diego, CA), p. 83411L.

  48. R. Xu, MS thesis, Massachusetts Institute of Technology (2012).

  49. N. Dutoit, B. Wardle, S.-G. Kim, Integr. Ferroelectr. 71 (1), 121 (2005).

  50. Q.-M. Wang, X.-H. Du, B. Xu, L.E. Cross, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 638 (1999).

  51. J.J. Bernstein, J. Bottari, K. Houston, G. Kirkos, R. Miller, B. Xu, Y. Ye, L.E. Cross, IEEE 1999 Ultrasonics Symposium (Lake Tahoe, NV, 1999).

  52. R. Xu, S.G. Kim, Power MEMS 2012, accepted.

  53. V. Bedekar, J. Oliver, S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1513 (2010).

  54. S. Priya, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010).

  55. M. Defosseux, M. Allain, P. Ivaldi, E. Defay, S. Basrour, Transducers ’11, Beijing, China, 5–9 June 2011 (2011), pp. 1859–1862.

  56. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sens. Actuators, A 105, 162 (2003).

  57. F. Martin, P. Muralt, M.-A. Dubois, A. Pezous, J. Vac. Sci. Technol., A 22 361 (2004).

  58. K. Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985).

  59. K. Najafi, T. Galchev, E.E. Aktakka, R.L. Peterson, J. McCullagh, Transducers 2011, Beijing, China, pp. 1845–1850 (2011).

  60. W. Al-ashtari, M. Hunstig, T. Hemsel, W. Sextro, Mechatronics 35019 (2012).

  61. M.O. Mansour, M.H. Arafa, S.M. Megahed, Sens. Actuators, A 163 (1), 297 (2010).

  62. K. Uchino, Ferroelectric Devices, 2nd ed. (CRC Press, Boca Raton, FL, 2009).

  63. G. Han, J. Ryu, W. Yoon, J. Choi, B. Hahn, J. Kim, D. Park, C. Ahn, S. Priya, D. Jeong, J. Appl. Phys. 110, 124101 (2011).

  64. B.A. Tuttle, J.A. Voigt, T.J. Garino, D.C. Goodnow, R.W. Schwartz, D.L. Lamppa, T.J. Headley, M.O. Eatough, Proceedings of the 8th IEEE International Symposium on Application of Ferroelectrics (1992), p. P344.

  65. G.L. Brennecka, W. Huebner, B.A. Tuttle, P.G. Clem, J. Am. Ceram. Soc. 87, 1459 (2004).

  66. S. Yokoyama, T. Ozeki, T. Oikawa, H. Funakubo, Jpn. J. Appl. Phys. 41, 6705 (2002).

  67. I. Kanno, S. Fujii, T. Kamada, R. Takayama, Appl. Phys, Lett. 70, 1378 (1997).

  68. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Nano Lett. 11 (3), 1331 (2011).

  69. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

  70. J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).

  71. S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958 (2011).

  72. C.W. Ahn, C.H. Choi, H.Y. Park, S. Nahm, S. Priya, J. Mater. Sci. 43, 6784 (2008).

  73. C.W. Ahn, C.S. Park, D. Viehland, S. Nahm, D.H. Kang, K.S. Bae, S. Priya, Jpn. J. Appl. Phys. 47, 8880 (2008).

  74. C.W. Ahn, D. Maurya, C.S. Park, S. Nahm, S. Priya, J. Appl. Phys. 105, 114108 (2009).

  75. K. Shibata, K. Suenaga, K. Watanabe, F. Horikiri, A. Nomoto, T. Mishima Jpn. J. Appl. Phys. 50, 041503 (2011).

  76. I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, T. Mishima, Sens. Actuators, A 179, 132 (2012).

  77. P. Muralt, J. Am. Ceram. Soc. 91, 1385 (2008).

  78. R. van Schaijk, R. Elfrink, T.M. Kamel, M. Goedbloed, IEEE Sensors 2008 Conference (2008), pp. 45–48.

  79. N. Heidrich, F. Knoebber, R.E. Sah, W. Pletschen, S. Hampl, V. Cimalla, V. Lebedev, Transducers’11, Bel. ing, China, 5–9 June 2011 (2011), pp. 1642–1644.

  80. T.-T. Yen, T. Hirasawa, P.K. Wright, A.P. Pisano, L. Lin, J. Micromech. Microeng. 21, 085037 (2011).

  81. F. Stoppel, C. Schroeder, F. Senger, B. Wagner, W. Benecke, Procedia Eng. 25, 721 (2011).

  82. B. Marinkovich, H. Koser, Appl. Phys. Lett. 94, 103505 (2009).

  83. B.P. Mann, N.D. Sims, J. Sound Vib. 319, 515 (2009).

  84. D.A.W. Barton, S.G. Burrow, L.R. Clare, J. Vib. Acoust. 132, 1 (2010).

  85. A. Erturk, D.J. Inman, J. Sound Vib. 330 (10), 2339 (2011).

  86. B. Andò, S. Baglio, C. Trigona, N. Dumas, L. Latorre, P. Nouet, J. Micromech. Microeng. 20, 125020 (2010).

  87. F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Smart Mater. Struct. 21 (2012).

  88. R. Xu, A. Hajati, S.G. Kim, Power MEMS 2011 (Seoul, Korea, 2011).

  89. A. Badel, D. Guyomar, F. Lefeuvre, C. Richard, J. Intell. Mater. Syst. Struct. 16, 889 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Office of Basic Energy Sciences, Department of Energy (#DE-FG02–07ER46480) and (DE-FG02–09ER46577), AFOSR Young Investigator Program, DARPA Grant (HR0011–06–1-0045), MIT-Iberian Nanotechnology Laboratory Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Gook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.G., Priya, S. & Kanno, I. Piezoelectric MEMS for energy harvesting. MRS Bulletin 37, 1039–1050 (2012). https://doi.org/10.1557/mrs.2012.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.275

Navigation