Skip to main content
Log in

Opportunities for mesoscale science

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The regime of mesoscale science, where the granularity of atoms and quantization of energy gives way to apparently continuous and infinitely divisible matter and energy, yields strikingly complex architectures, phenomena, and functionalities that control macroscopic material behavior. Research in mesoscale materials and chemical science is an opportunity space for next-generation discovery, science, technology, and innovation, with promise of new solutions for societal problems such as energy, environment, climate, advanced manufacturing, and economic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. BESAC Meso report: http://science.energy.gov/~/media/bes/pdf/reports/files/OFMS_rpt.pdf.

  2. “Nanosciences and nanotechnologies: An action plan for Europe 2005–2009” (European Commission, 2005).

  3. M.C. Roco, C.A. Mirkin, M.C. Hersam, in The National Nanotechnology Initiative at Five Years: Assessment and Recommendations of the National Nanotechnology Advisory Panel, PCAST, 2005; Nanotechnology Research Directions for Societal Needs in 2020 (Springer, Berlin and Boston, 2010).

  4. G.E. Ice, J.D. Budai, J.W.L. Pang, Science 334, 1234 (2011).

    Google Scholar 

  5. R.B. Laughlin, D. Pines, PNAS 97, 28 (2000).

  6. D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourg, A.M. Lubers, Chem. Soc. Rev. 38, 226 (2009).

  7. G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002).

  8. http://science.energy.gov/bes/news-and-resources/reports/basic-research-needs.

  9. MRS Bull. 33 (4), (2008).

  10. “Materials for Key Enabling Technologies” (E-MRS, 2011).

  11. S. Bader, APS News 21, 8 (2012).

  12. M. Antonietti, G.A. Ozin, Chem. Eur. J. 10, 28 (2004).

  13. D.J. Griffiths, Introduction to Quantum Mechanics (2nd ed.) (Prentice Hall, NJ, 2004).

  14. E. Dagotto, Science 309, 257 (2005).

  15. M. Skowronski, S. Ha, J. Appl. Phys. 99, 011101 (2006).

  16. J. Wei, Z. Wang, W. Chen, D.H. Cobden, Nat. Nanotechnol. 4, 420 (2009).

  17. A.S. Tayi, A.K. Shveyd, A.C.-H. Sue, J.M. Szarko, B.S. Rolczynski, D. Cao, T. Jackson Kennedy, A.A. Sarjeant, C.L. Stern, W.F. Paxton, W. Wu, S.K. Dey, A.C. Fahrenbach, J.R. Guest, H. Mohseni, L.X. Chen, K.L. Wang, J. Fraser Stoddart S.I. Stupp, Nature 488, 485 (2012).

  18. C.F. Schreck, M. Mailman, B. Chakraborty, C.S. O’Hern, Phys. Rev. E 85, 061305 (2012).

  19. C. Rockstuhl, C. Menzel, S. Muhlig, J. Petschulat, C. Helgert, C. Etrich, T. Pertsch, F. Lederer, Phys. Rev. B 83, 245119 (2011).

  20. R. Yoshida, Colloid Polym. Sci. 289, 475 (2011).

  21. S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich, S. Wirth, Nature 474, 362 (2011).

  22. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

  23. S.D. Tilley, M. Cornuz, K. Sivula, M. Graetzel, Angew. Chem. Int. Ed. 49, 6405 (2010).

  24. S. Ruhle, M. Shalom, A. Zaban, Chem. Phys. Chem. 11, 2290 (2010).

  25. S.D. Bader, S.S.P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71 (2010).

  26. S.H. Baek, J. Park, D.M. Kim, V.A. Aksyuk, R.R. Das, S.D. Bu, D.A. Felker J. Lettieri, V. Vaithyanathan, S.S.N. Bharadwaja, N. Bassiri-Gharb, Y.B. Chen, H.P. Sun, C.M. Folkman, H.W. Jang, D.J. Kreft, S.K. Streiffer, R. Ramesh, X.Q. Pan, S. Trolier-McKinstry, D.G. Schlom, M.S. Rzchowski, R.H. Blick, C.B. Eom, Science 334, 958 (2011).

  27. C.J. Hamelin, B.J. Diak, A.K. Pilkey, Int. J. Plast. 27, 1185 (2011).

  28. R.H. French, J.M. Rodrıguez-Parada, M.K. Yang, R.A. Derryberry, N.T. Pfeiffenberger, Sol. Energy Mater. Sol. Cells 95, 2077 (2011).

  29. .CM. Hefferan, J. Lind, S.F. Li, U. Lienert, A.D. Rollett, R.M. Suter, Acta Mater. 60, 4311 (2012).

  30. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, LValdevit,WB. Carter, Science 334, 962 (2011).

  31. L.-P. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater. 10, 775 (2008).

  32. H.-L. Jiang, Q. Xu, Chem. Commun. 47, 3351 (2011).

  33. J. Chen, F. Cheng, Accts. Chem. Res. 42, 713 (2009).

  34. C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133, 2132 (2011).

  35. S.T. Larned, Freshwater Biol. 57, 885 (2012).

  36. J. Taron, D. Elsworth, Int. J. Rock Mech. Min. Sci. 47, 1339 (2010).

  37. New Research Opportunities in Dynamic Compression Science (Washington State University, 2012). Available at dcs-aps.wsu.edu.

  38. H.E. Türeci, M. Hanl, M. Claassen, A. Weichselbaum, T. Hecht, B. Braunecker A. Govorov, L. Glazman, A. Imamoglu, J.von Delft, Phys. Rev. Lett. 106, 107402 (2011).

  39. M. Vojta, J. Low Temp Phys 161, 203 (2010).

  40. R.Yu,Q. Si, Phys. Rev. B 84, 235115 (2011).

  41. E. Berg, E. Fradkin, S.A. Kivelson, J.M. Tranquada, New J. Phys. 11, 115004 (2009).

  42. Y. Mizukami, H. Shishido, T. Shibauchi, M. Shimozawa, S. Yasumoto, D. Watanabe, M. Yamashita, H. Ikeda, T. Terashima, H. Kontani, Y. Matsuda, Nat. Phys. 7, 849 (2011).

  43. D.V. Talapin, E.V. Shevchenko, M.I. Bodnarchuk, X. Ye, J. Chen, C.B. Murray, Nature 461, 964 (2009).

  44. F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, G.H. Fredrickson, Science 336, 434 (2012).

  45. C.L. Phillips, J.A. Anderson, G. Huber, S.C. Glotzer, Phys. Rev. Lett. 108, 198304 (2012).

  46. D. Frenkel, D.J. Wales, Nat. Mater. 10, 410 (2011).

  47. R. Ruiz, H. Kang, F.A. Detcheverry, E. Dobisz, D.S. Kercher, T.R. Albrecht, J.J. de Pablo, P.F. Nealey, Science 321, 936 (2008).

  48. A.T.K. Ghariehali, K.W. Gotrik, A.F. Hannon, A. Alexander-Katz, C.A. Ross, K.K. Berggren, Science 336, 1294 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank our colleagues on the Mesoscale Science Subcommittee of the US DOE Basic Energy Sciences Advisory Committee and acknowledge the many individuals who provided input at www.meso2012.com. This work was supported in part by the Division of Materials Science and Engineering, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Crabtree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crabtree, G.W., Sarrao, J.L. Opportunities for mesoscale science. MRS Bulletin 37, 1079–1088 (2012). https://doi.org/10.1557/mrs.2012.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.274

Navigation