Skip to main content
Log in

Scanning probe microscopy of solar cells: From inorganic thin films to organic photovoltaics

  • Scanning probes for new energy materials: Probing local structure and function
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning probe microscopy (SPM) has made significant contributions to our understanding of the sub-processes underlying photovoltaic action. These techniques allow local investigation of the electrical and optical properties of a material. Spatially resolved measurements of surface photovoltage and photocurrent have been particularly useful in understanding charge generation and separation. In thin-film inorganic solar cells, for example, Kelvin probe force microscopy (KPFM) has revealed that charge separation does not occur at a heterojunction as expected, but instead occurs at a homojunction buried ∼50 nm within the absorbing layer. In organic photovoltaics, submicron maps of photocurrent have contributed to the understanding of the interplay between processing conditions, blend morphology, and device performance. Such functional imaging distinguishes SPM from complementary structural characterization techniques. Our goal in this article is to provide the materials science community with an appreciation for the capabilities, considerations, and limitations associated with SPM studies of solar cell materials and devices. Highlighted techniques include scanning tunneling microscopy, photoconductive atomic force microscopy, near-field scanning optical microscopy, KPFM, and time-resolved electric force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. † PCBM, phenyl-C61-butyric acid methyl ester

  2. ‡ P3BT, poly(3-butylthiophene)

References

  1. U.S. Energy Information Administration, Annual Energy Review, 2011.

  2. European Photovoltaic Industry Association, Global Market Outlook for Photovoltaics, 2012.

  3. U.S. Energy Information Administration, Annual Photovoltaic Module/Cell Manufacturers Survey, 2010.

  4. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 20, 12 (2012).

    Google Scholar 

  5. B. Azzopardi, C.J.M. Emmott, A. Urbina, F.C. Krebs, J. Mutale, J. Nelson, Energy Environ. Sci. 4, 3741 (2011).

    Google Scholar 

  6. M.A. Green, K. Emery, D.L. King, Y. Hishikawa, W. Warta, Prog. Photovoltaics Res. Appl. 15, 35 (2007).

    Google Scholar 

  7. S.R. Forrest, MRS Bull. 30, 28 (2005).

    Google Scholar 

  8. W.R. Silveira, E.M. Muller, T.N. Ng, D.H. Dunlap, J.A. Marohn, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, S.V. Kalinin, A. Gruverman, Eds. (Springer Verlag, NY, 2007), vol. II, pp. 788 – 830.

    Google Scholar 

  9. L.S.C. Pingree, O.G. Reid, D.S. Ginger, Adv. Mater. 21, 19 (2009).

    Google Scholar 

  10. M. Zorn, S.A.L. Weber, M.N. Tahir, W. Tremel, H. Butt, R. Berger, R. Zentel, Nano Lett. 10, 2812 (2010).

    Google Scholar 

  11. J.J. Choi, W. Wenger, R. Hoffman, Y.-F. Lim, J. Luria, J. Jasieniak, J.A. Marohn, T. Hanrath, Adv. Mater. 23, 3144 (2011).

    Google Scholar 

  12. C.-S. Jiang, F.S. Hasoon, H.R. Moutinho, H.A. Al-thani, M.J. Romero, M.M. Al-jassim, Appl. Phys. Lett. 82, 127 (2003).

    Google Scholar 

  13. O. Cojocaru-Miredin, P. Choi, R. Wuerz, D. Raabe, Appl. Phys. Lett. 98, 103504 (2011).

    Google Scholar 

  14. C. Brabec, N. Sariciftci, J. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Google Scholar 

  15. A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Mater. Today 10, 28 (2007).

    Google Scholar 

  16. P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Google Scholar 

  17. J.E. Anthony, Chem. Rev. 106, 5028 (2006).

    Google Scholar 

  18. A.W. Hains, Z. Liang, M.A. Woodhouse, B.A. Gregg, Chem. Rev. 110, 6689 (2010).

    Google Scholar 

  19. B.A. Gregg, J. Phys. Chem. B 107, 4688 (2003).

    Google Scholar 

  20. B. Gregg, M. Hanna, J. Appl. Phys. 93, 3605 (2003).

    Google Scholar 

  21. J.-L. Bredas, J. Cornil, A.J. Heeger, Adv. Mater. 8, 447 (1996).

    Google Scholar 

  22. S. Alvarado, P. Seidler, D. Lidzey, D. Bradley, Phys. Rev. Lett. 81, 1082 (1998).

    Google Scholar 

  23. U. Zerweck, C. Loppacher, T. Otto, S. Grafstrom, L. Eng, Phys. Rev. B 71, 125424 (2005).

    Google Scholar 

  24. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Science 324, 1428 (2009).

    Google Scholar 

  25. L. Nony, A. Foster, F. Bocquet, C. Loppacher, Phys. Rev. Lett. 103, 036802 (2009).

    Google Scholar 

  26. S. Sadewasser, P. Jelinek, C.-K. Fang, O. Custance, Y. Yamada, Y. Sugimoto, M. Abe, S. Morita, Phys. Rev. Lett. 103, 266103 (2009).

    Google Scholar 

  27. E.J. Spadafora, R. Demadrille, B. Ratier, B. Grevin, Nano Lett. 10, 3337 (2010).

    Google Scholar 

  28. R. Giridharagopal, G.E. Rayermann, G. Shao, D.T. Moore, O.G. Reid, A.F. Tillack, D.J. Masiello, D.S. Ginger, Nano Lett. 12, 893 (2012).

    Google Scholar 

  29. H. Mönig, Y. Smith, R. Caballero, C. Kaufmann, I. Lauermann, M. Lux-Steiner, S. Sadewasser, Phys. Rev. Lett. 105, 116802 (2010).

    Google Scholar 

  30. M. Guide, X.-D. Dang, T.-Q. Nguyen, Adv. Mater. 23, 2313 (2011).

    Google Scholar 

  31. T.J.K. Brenner, C.R. Mcneill, J. Phys. Chem. C 115, 19364 (2011).

    Google Scholar 

  32. D.C. Coffey, D.S. Ginger, Nat. Mater. 5, 735 (2006).

    Google Scholar 

  33. A. Breymesser, V. Schlosser, D. Peiro, C. Voz, J. Bertomeu, J. Andreu, J. Summhammer, Sol. Energy Mater. Sol. Cells 66, 171 (2001).

    Google Scholar 

  34. T. Glatzel, D. Fuertes Marrón, T. Schedel-Niedrig, S. Sadewasser, M.C. Lux-Steiner, Appl. Phys. Lett. 81, 2017 (2002).

    Google Scholar 

  35. C.-S. Jiang, H.R. Moutinho, D.J. Friedman, J.F. Geisz, M.M. Al-Jassim, J. Appl. Phys. 93, 10035 (2003).

    Google Scholar 

  36. C.-S. Jiang, D.J. Friedman, J.F. Geisz, H.R. Moutinho, M.J. Romero, M.M. Al-Jassim, Appl. Phys. Lett. 83, 1572 (2003).

    Google Scholar 

  37. I. Visoly-Fisher, S.R. Cohen, D. Cahen, C.S. Ferekides, Appl. Phys. Lett. 83, 4924 (2003).

    Google Scholar 

  38. A.J. Ptak, R. France, C.-S. Jiang, R.C. Reedy, J. Vac. Sci. Technol., B 26, 1053 (2008).

    Google Scholar 

  39. R. Mainz, F. Streicher, D. Abou-ras, S. Sadewasser, R. Klenk, M.C. Lux-steiner, Phys. Status Solidi A 206, 1017 (2009).

    Google Scholar 

  40. M. Dante, J. Peet, T.-Q. Nguyen, J. Phys. Chem. C 112, 7241 (2008).

    Google Scholar 

  41. M. Dante, A. Garcia, T.-Q. Nguyen, J. Phys. Chem. C 113, 1596 (2009).

    Google Scholar 

  42. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Google Scholar 

  43. S. Alvarado, S. Barth, H. Bässler, U. Scherf, J.-W. van der Horst, P. Bobbert, M. Michels, Adv. Funct. Mater. 12, 117 (2002).

    Google Scholar 

  44. M. Kemerink, S. Alvarado, P. Müller, P. Koenraad, H. Salemink, J. Wolter, R. Janssen, Phys. Rev. B 70, 045202 (2004).

    Google Scholar 

  45. M. Kemerink, P. Offermans, J. Van Duren, P. Koenraad, R. Janssen, H. Salemink, J. Wolter, Phys. Rev. Lett. 88, 096803 (2002).

    Google Scholar 

  46. A.L. de Lozanne, S.A. Elrod, C.F. Quate, Phys. Rev. Lett. 54, 2433 (1985).

    Google Scholar 

  47. D. Azulay, O. Millo, E. Savir, J.P. Conde, I. Balberg, P hys. Rev. B 8 0, 245312 (2009).

    Google Scholar 

  48. G. Binnig, C. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Google Scholar 

  49. S. Nilsson, A. Bernasik, A. Budkowski, E. Moons, Marcomolecules, 40, 8291, (2007).

    Google Scholar 

  50. T. Kelley, E. Granstrom, C. Frisbie, Adv. Mater. 11, 261 (1999).

    Google Scholar 

  51. D. Azulay, I. Balberg, V. Chu, J. Conde, O. Millo, Phys. Rev. B 71, 113304 (2005).

    Google Scholar 

  52. D. Azulay, O. Millo, I. Balberg, H.-W. Schock, I. Visoly-Fisher, D. Cahen, Sol. Energy Mater. Sol. Cells 91, 85 (2007).

    Google Scholar 

  53. O.G. Reid, K. Munechika, D.S. Ginger, Nano Lett. 8, 1602 (2008).

    Google Scholar 

  54. L.S.C. Pingree, O.G. Reid, D.S. Ginger, Nano Lett. 9, 2946 (2009).

    Google Scholar 

  55. D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Nano Lett. 7, 738 (2007).

    Google Scholar 

  56. O.G. Reid, H. Xin, S.A. Jenekhe, D.S. Ginger, J. Appl. Phys. 108, 084320 (2010).

    Google Scholar 

  57. X.-D. Dang, A.B. Tamayo, J. Seo, C.V. Hoven, B. Walker, T.-Q. Nguyen, Adv. Funct. Mater. 20, 3314 (2010).

    Google Scholar 

  58. H. Xin, O.G. Reid, G. Ren, F.S. Kim, D.S. Ginger, S.A. Jenekhe, ACS Nano 4, 1861 (2010).

    Google Scholar 

  59. E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991).

    Google Scholar 

  60. A. Cadby, G. Khalil, A.M. Fox, D.G. Lidzey, J. Appl. Phy. 103, 093715 (2008).

    Google Scholar 

  61. L. Gutay, R. Pomraenke, C. Lienau, G.H. Bauer, Phys. Status Solidi A 206, 1005 (2009).

    Google Scholar 

  62. C.R. McNeill, P.C. Dastoor, J. Appl. Phys. 99, 033502 (2006).

    Google Scholar 

  63. S. Mukhopadhyay, S. Ramachandra, K.S. Narayan, J. Phys. Chem. C 115, 17184 (2011).

    Google Scholar 

  64. Y. Ahn, J. Dunning, J. Park, Nano Lett. 5, 1367 (2005).

    Google Scholar 

  65. D. Kabra, K. Narayan, Adv. Mater. 19, 1465 (2007).

    Google Scholar 

  66. Y. Martin, D. Abraham, H. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).

    Google Scholar 

  67. M. Nonnenmacher, M. O’Boyle, H. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Google Scholar 

  68. S. Sadewasser, T. Glatzel, Eds., Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces, Springer Series in Surface Sciences (Springer, NY, 2011).

    Google Scholar 

  69. A. Kikukawa, S. Hosaka, R. Imura, Appl. Phys. Lett. 66, 3510 (1995).

    Google Scholar 

  70. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991).

    Google Scholar 

  71. K. Maturova, M. Kemerink, M. Wienk, D. Charrier, R. Janssen, Adv. Funct. Mater. 19, 1379 (2009).

    Google Scholar 

  72. H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.C. Lux-Steiner, N.S. Sariciftci, Nano Lett. 5, 269 (2005).

    Google Scholar 

  73. M. Chiesa, L. Bürgi, J.S. Kim, R. Shikler, R.H. Friend, H. Sirringhaus, Nano Lett. 5, 559 (2005).

    Google Scholar 

  74. V. Palermo, M.B.J. Otten, A. Liscio, E. Schwartz, P.A.J. de Witte, M.A. Castriciano, M.M. Wienk, F. Nolde, G. De Luca, J.J.L.M. Cornelissen, R.A.J. Janssen, K. Müllen, A.E. Rowan, R.J.M. Nolte, P. Samori, J. Am. Chem. Soc. 130, 14605 (2008).

    Google Scholar 

  75. O.G. Reid, G.E. Rayermann, D.C. Coffey, D.S. Ginger, J. Phys. Chem. C 114, 20672 (2010).

    Google Scholar 

  76. H. Snaith, A. Arias, A. Morteani, C. Silva, R. Friend, Nano Lett. 2, 1353 (2002).

    Google Scholar 

  77. C.R. McNeill, H. Frohne, J.L. Holdsworth, P.C. Dastoor, Nano Lett. 4, 2503 (2004).

    Google Scholar 

  78. C. Groves, O.G. Reid, D.S. Ginger, Acc. Chem. Res. 43, 612 (2010).

    Google Scholar 

  79. S. Sadewasser, T. Glatzel, M. Rusu, A. Jäger-Waldau, M.C. Lux-Steiner, Appl. Phys. Lett. 80, 2979 (2002).

    Google Scholar 

  80. A.A. McDaniel, J.W.P. Hsu, A.M. Gabor, Appl. Phys. Lett. 70, 3555 (1997).

    Google Scholar 

  81. S. Sadewasser, T. Glatzel, S. Schuler, S. Nishiwaki, R. Kaigawa, M.C. Lux-Steiner, Thin Solid Films 431432, 257 (2003).

    Google Scholar 

  82. C.-S. Jiang, R. Noufi, J.A. Abushama, K. Ramanathan, H.R. Moutinho, J. Pankow, M.M. Al-Jassim, Appl. Phys. Lett. 84, 3477 (2004).

    Google Scholar 

  83. C.-S. Jiang, R. Noufi, K. Ramanathan, J.A. Abushama, H.R. Moutinho, M.M. Al-Jassim, Appl. Phys. Lett. 85, 2625 (2004).

    Google Scholar 

  84. G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H. Strunk, U. Rau, J. Werner, Appl. Phys. A 82, 1 (2006).

    Google Scholar 

  85. S. Siebentritt, S. Sadewasser, M. Wimmer, C. Leendertz, T. Eisenbarth, M. Lux-Steiner, Phys. Rev. Lett. 97, 146601 (2006).

    Google Scholar 

  86. M. Hafemeister, S. Siebentritt, J. Albert, M.C. Lux-Steiner, S. Sadewasser, Phys. Rev. Lett. 104, 196602 (2010).

    Google Scholar 

  87. R. Baier, D. Abou-Ras, T. Rissom, M.C. Lux-Steiner, S. Sadewasser, Appl. Phys. Lett. 99, 172102 (2011).

    Google Scholar 

  88. D. Fuertes Marrón, S. Sadewasser, A. Meeder, T. Glatzel, M. Lux-Steiner, Phys. Rev. B 71, 033306 (2005).

    Google Scholar 

  89. C.-S. Jiang, R. Noufi, K. Ramanathan, H.R. Moutinho, M.M. Al-Jassim, J. Appl. Phys. 97, 053701 (2005).

    Google Scholar 

  90. M. Rusu, T. Glatzel, A. Neisser, C.A. Kaufmann, S. Sadewasser, M.C. Lux-Steiner, Appl. Phys. Lett. 88, 143510 (2006).

    Google Scholar 

  91. T. Glatzel, M. Rusu, S. Sadewasser, M.C. Lux-Steiner, Nanotechnology 19, 145705 (2008).

    Google Scholar 

  92. D. Fuertes Marrón, T. Glatzel, A. Meeder, T. Schedel-Niedrig, S. Sadewasser, M.C. Lux-Steiner, Appl. Phys. Lett. 85, 3755 (2004).

    Google Scholar 

  93. I. Visoly-Fisher, S. Cohen, K. Gartsman, A. Ruzin, D. Cahen, Adv. Funct. Mater. 16, 649 (2006).

    Google Scholar 

  94. M. Rusu, M. Bär, S. Lehmann, S. Sadewasser, L. Weinhardt, C.A. Kaufmann, E. Strub, J. Röhrich, W. Bohne, I. Lauermann, C. Jung, C. Heske, M.C. Lux-Steiner, Appl. Phys. Lett. 95, 173502 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. O’Dea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Dea, J.R., Brown, L.M., Hoepker, N. et al. Scanning probe microscopy of solar cells: From inorganic thin films to organic photovoltaics. MRS Bulletin 37, 642–650 (2012). https://doi.org/10.1557/mrs.2012.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.143

Navigation