Skip to main content
Log in

Carbon nanotube transparent conducting films

  • Solution-processed transparent electrodes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are high aspect ratio conducting nanocylinders possessing unprecedented mechanical, thermal, optical, and electronic properties. They are ideal building blocks for use in assembling a randomly oriented, highly connected nanoporous network. When this network is deposited on top of a substrate surface as a thin film with a thickness in the range of 10–100 nm, it becomes a transparent conducting film—an ubiquitous material, currently dominated by tin-doped indium oxide (ITO). This article reviews recent progress in CNT transparent conducting films and discusses fundamental properties of CNTs important for the formation of these films, methods for CNT dispersion and assembling CNTs into transparent conducting films, properties of the CNT transparent conducting films, and issues remaining to be solved in order to make these films a commercially viable alternative to ITO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. D. Hecht, L.-B. Hu, G. Irvin, Adv. Mater. 78, 1 (2011).

    Google Scholar 

  2. L.-B. Hu, D. Hecht, G. Gruner, Chem. Rev. 110, 5790 (2010).

  3. S. Roth, H.J. Park, Chem. Soc. Rev. 39, 2477 (2010).

  4. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007).

  5. D. Shibuta, U.S. Patent 5,853,877 (1998).

  6. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).

  7. J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391 (6662), 59 (1998).

  8. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273, 483 (1996).

  9. J.N. Coleman, Adv. Funct. Mater. 19, 3680 (2009).

  10. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, UK, 1991).

  11. H. Yoshida, T. Sugai, H. Shinohara, J. Phys. Chem. C 112, 19908 (2008).

  12. C.-M. Niu, “Carbon nanotube network transparent electrode for organic solar cells,” 3rd workshop on Sustainable Energy Future: Focus on Organic Photovoltaics, ORNL, 2010.

  13. S. Iijima, T. Ichihashi, Nature 363, 603 (1993).

  14. D.S. Bethune, C.H. Kiang, M. Sde Vries, G. Gorman, R. Savoy, J. Vazquez, R. Bayers, Nature 363, 605 (1993).

  15. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243, 491 (1995).

  16. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999).

  17. J.B. Howard, J.T. McKinnon, Y. Makarovsky, A.L. LaFleur, M.E. Johnson, Nature 352, 139 (1991).

  18. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 296, 195 (1998).

  19. H. Qi, C. Qian, J. Liu, J. Chem. Mater. 18, 5691 (2006).

  20. V. Zolyomi, A. Rusznyak, J. Kurti, A. Gali, F. Simon, K. Kuzmany, A. Szabados, P.R. Surjan, Phys. Status Solidi B 243, 3476 (2006).

  21. M. Zhang, S.-L. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Science 309, 1215 (309).

  22. C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng, Y.-Y. Zhang, Y.-H. Sun, Q.-Q. Li, S.-S. Fan, K.-L. Jiang, Adv. Funct. Mater. 20, 885 (2010).

  23. K.L. Jiang, Q.-Q. Li, S.-S. Fan, Nature 419, 801 (2002).

  24. C.-M. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70, 1480 (1997).

  25. K.-F. Fu, Y.-P. Sun, J. Nanosci. Technol. 3 (5), 351 (2003).

  26. H.T. Ham, Y.S. Choi, I.J. Chung, J. Colloid Sci. 286, 216 (2005).

  27. J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 303, 125 (1999).

  28. K.D. Ausman, R. Piner, O. Lourie, R.S. Ruoff, M. Korobov, J. Phys. Chem. B 104, 8911 (2000).

  29. J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Chem. Commun. 193 (2001).

  30. B.J. Landi, J.H. Ruf, J.J. Worman, R.P. Raffaelle, J. Phys. Chem. B 108, 17089 (2004).

  31. S.D. Bergin, Z.-Y. Sun, P. Streich, J. Hamilton, J.N. Colman, J. Phys. Chem. C 114, 231 (2010).

  32. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, R.E. Smalley, J. Schmidt, Y. Talmon, Nano Lett. 3, 1379 (2003).

  33. O. Matarredona, H. Rhoads, Z.R. Li, J.H. Harwell, L. Balzano, D.E. Resasco, J. Phys. Chem. B 107, 13357 (2203).

  34. Y.-Q. Tan, D.E. Resasco, J. Phys. Chem. B 109, 14454 (2005).

  35. Z.-C. Wu, Z.-H. Chen, X. Du, J.L. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Renolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004).

  36. L.-B. Hu, D.S. Hecht, G. Grüner, Nano Lett. 4, 2513 (2004).

  37. M. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. Usrey, M. Strano, J. Rogers, Nano Lett. 4, 1643 (2004).

  38. J.W. Jo, J.W. Jung, J.U. Lee, W.H. Jo, ACS Nano 4, 5382 (2010).

  39. S.-F. Pei, J.-H. Du, Y. Zheng, C. Liu, H.-M. Cheng, Nanotechnology 20, 235707 (2009).

  40. M.E. Spotnitz, D. Ryan, H.A. Stone, Mater. Chem. 14, 1299 (2004).

  41. T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Chem. Mater. 15, 175 (2003).

  42. M. Haempgen, G.S. Duesberg, S. Roth, Appl. Surf. Sci. 252, 425 (2005).

  43. B. Dan, G.C. Irvin, M. Pasquali, ACS Nano 4, 853 (2009).

  44. L.-B. Hu, D.S. Hecht, G. Gruner, Nano Lett. 4, 2513 (2004).

  45. Y.-X. Zhou, L.-B. Hu, G. Gruner, Appl. Phys. Lett. 88, 123109 (2006).

  46. B. Buzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J.P. Salvetat L. Forro, Phys. Rev. B 61, 2468 (2000).

  47. D.S. Hecht, A.M. Heintz, R. Lee, L.-B. Hu, B. Moore, C. Cucksey, S. Risser, Nanotechnology 21, 155202 (2010).

  48. M. Kaempgen, G.S. Duesberg, S. Roth, Appl. Surf. Sci. 252, 425 (2005).

  49. A.A. Green, M.C. Hersam, Nano Lett. 8, 1417 (2008).

  50. B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Appl. Phys. Lett. 90, 121913 (2007).

  51. X. Yu, R. Rajamani, K.A. Stelson, T. Cui, Surf. Coat. Technol. 202, 2002 (2007).

  52. L.A. Rowley, T.M. Spath, G.C. Irvin, Am. Chem. Soc. 232, 130 (2006).

  53. H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007).

  54. R. Jackson, B. Domercq, R. Jain, B. Kippelen, S. Graham, Adv. Funct. Mater. 18, 2548 (2008).

  55. S.M. Kim, Y.W. Jo, K.K. Kim, D.L. Duong, H.-J. Shin, J.H. Han, J.-Y. Choi, J. Kong, Y.H. Lee, ACS Nano 4, 6998 (2010).

  56. D. Hecht, L.-B. Hu, G. Gruner, Appl. Phys. Lett. 89, 133112 (2006).

  57. L.-B. Hu, D.S. Hecht, G. Gruner, Appl. Phys. Lett. 94, 081103 (2009).

  58. K.A. Sierros, D.S. Hecht, D.A. Banerjee, N.J. Morris, L. Hu, G.C. Irvin R.S. Lee, D.R. Cairns, Thin Solid Films 518, 6977 (2010).

  59. D. Hecht, D. Thomas, C. Ladous, T. Lam, Y.-B. Park, G. Irvin, P. Drzaic, J. SID 17, 943 (2009).

  60. A. Schindler, P. Schau, N. Fruehauf, J. SID 17, 863 (2009).

  61. M. Contreras, T. Barnes, J. van de Lagemaat, G. Rumbles, T.J. Coutts, C. Weeks, P. Glatkowski, J. Peltola, 2006 IEEE 4th World Conference on PV Energy Conversion (WCPEC-4), Waikoloa, HI, 1–12 May 2006.

  62. C.M. Aquirre, S. Auvray, S. Pigeon, R. Izquierdo, P. Desjardins, R. Martel Appl. Phys. Lett. 88, 183104 (2006).

  63. E. Ou, L.-B. Hu, G. Raymond, O. Soo, J. Pan, Z. Zheng, Y. Park, D.S. Hecht, ACS Nano 3 (8), 2258 (2009).

  64. T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larson, G. Teeter, K.M. Jones, J.L. Blackburn, J. van de Lagemaat, Appl. Phys. Lett. 96, 243309 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, C. Carbon nanotube transparent conducting films. MRS Bulletin 36, 766–773 (2011). https://doi.org/10.1557/mrs.2011.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.213

Navigation