Skip to main content

Advertisement

Log in

Electric power grid application requirements for superconductors

  • Superconductivity at 100—Where we’ve been and Where we’re Going
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Electric power grid applications impose many requirements on high-temperature superconductor (HTS) materials. In addition to a high superconductor transition temperature, these include all the parameters enabling a cost-effective, robust, and high-performance wire: high current-carrying capability in relevant ranges of field and temperature, flexibility and mechanical strength in a wire form, electrical and chemical stability, low ac loss, high wire uniformity, and low wire manufacturing cost with high reproducibility and yield. This daunting list explains why it has taken so long to bring HTS wires to where they are today—starting to be used in commercial power projects. The benefits of these wires are very significant: high efficiency and power density in an accessible temperature range, enabling high-capacity and easily installed cables, compact and powerful rotating machinery, and unique current-limiting functionality. However, the job is not done. Improved wire properties and reduced manufacturing costs of existing materials will further broaden the impact of this technology. Meanwhile the search for new materials—and for room-temperature superconductors—must continue, with more attention to thermal fluctuations, flux creep, and reduced anisotropy, which are critical to their application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. D.C. Larbalestier, in 100 Years of Superconductivity, H. Rogalla, P. Kes, Eds. (2011), in press.

  2. J. Schwartz, P.V.P.S.S. Sastry, in Handbook of Superconducting Materials, D.A. Cardwell, D.S. Ginley, Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp.1029–1048.

    Google Scholar 

  3. D.A. Cardwell, D.S. Ginley, Eds., Handbook of Superconducting Materials ( Institute of Physics Publishing, Bristol, UK, 2003), Vol. 2, pp. 1550–1650.

  4. A.P. Malozemoff, IEEE Trans. Appl. Supercond. 16, 54 (2006).

    Google Scholar 

  5. R.M. Scanlan, A.P. Malozemoff, D.C. Larbalestier, Proc. IEEE 92, 1639 (2004).

    Google Scholar 

  6. R.E. Schwall, Proceedings of the 2001 International Workshop on Superconductivity, Honolulu, Hawaii (ISTEC, Tokyo 2001), pp. 263–266.

  7. C.W. Chu, in Handbook of Superconducting Materials, D.A. Cardwell, D.S. Ginley (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 2, pp. 1993–2006.

  8. A. Gurevich, Nat. Mater. 10, 255 (2011).

    Google Scholar 

  9. M. Tinkham, Introduction to Superconductivity, second edition (McGraw-Hill, New York, NY, 1996), pp. 7.

  10. A.P. Malozemoff, in Physical Properties of High Temperature Supercodonductors, D. Ginsberg, Ed. (World Scientific Publishing, Singapore 1989), pp. 71–150.

  11. A. Koblischka-Veneva, N. Sakai, S. Tajima, M. Murakami, in Handbook of Superconducting Materials, D.A. Cardwell, D.S. Ginley, Eds. (Institute of Physics Publishing, Bristol, UK, 2003 ), Vol. 1, pp. 893–946.

  12. P.N. Mikheenko, K.K. Uprety, S.X. Dou, in Handbook of Superconducting Materials, D.A. Cardwell, D.S. Ginley, Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp. 947–992.

  13. A.P. Malozemoff, Physica C 185189, 264 (1991).

  14. L. Civale, presented at the 2009 International Workshop on Coated Conductors for Applications, Barcelona, Spain (22–24 November 2009).

  15. A.P. Malozemoff, M.P.A. Fisher, Phys. Rev. B 42, 6784 (1990).

    Google Scholar 

  16. P. Caracino, R. Mele, M. Nassi, in Handbook of Superconducting Materials, D.A. Cardwell, D.S. Ginley, Eds. (Institute of Physics Publishing, Bristol, UK, 2003), Vol. 1, pp. 1613–1624.

  17. M. Rupich, E. Hellstrom, in 100 Years of Superconductivity, H. Rogalla, P. Kes, Eds. (2011), in press.

  18. A.P. Malozemoff, Y. Yamada, in 100 Years of Superconductivity, H. Rogalla, P. Kes, (2011), in press.

  19. J. McCall, B. Gamble, S. Eckroad, CIGRE Canada Conference on Power Systems, Toronto, Canada (4–6 October 2009), pp. 152 .

  20. A. Allais, European patent, EP 1923926 B1 (January 12, 2011).

  21. G. Snitchler, in Proc. International Power Electronics Conference, Sapporo, Japan (21–24 June 2010); IEEE Xplore and CD-ROM Conference Proceedings.

  22. S. Kalsi, K. Weeber, H. Takesue, C. Lewis, H.-W. Neumueller, R.D. Blaugher, Proc. IEEE 92, 1688 (2004).

    Google Scholar 

  23. H.W. Weijers, U.P. Trociewitz, W.D. Markiewicz, J. Jiang, D. Myers, E.E. Hellstrom, A. Xu, J. Jaroszynski, P. Noyes, Y. Viouchkov, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 20, 576 (2010).

    Google Scholar 

  24. A.P. Malozemoff, G. Snitchler, Y. Mawatari, IEEE Trans. Appl. Supercond. 19, 3115 (2009).

    Google Scholar 

  25. N. Amemiya, Z. Jiang, M. Nakahata, M. Yagi, S. Mukoyama, N. Kashima, S. Nagaya, Y. Shiohara, IEEE Trans. Appl. Supercond. 17, 1712 (2007).

    Google Scholar 

  26. J. Eickemeyer, R. Huhne, A. Guth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, B. Holzapfel, Supercond. Sci. Technol. 23, 085012 (2010).

    Google Scholar 

  27. M. Wilson, Superconducting Magnets (Clarendon, Oxford, UK, 1983).

    Google Scholar 

  28. J.R. Clem, Phys. Rev. B 77, 134506 (2008).

    Google Scholar 

  29. L. Masur, E. Podtburg, D. Buczek, W. Carter, D. Daly, U. Kosasih, S.-J. Loong, K. Manwiller, D. Parker, P. Miles, M. Tanner, J. Scudiere, Adv. Cryogen. Eng. 46, 871 (2000).

    Google Scholar 

  30. C.C. Clickner, J.W. Ekin, N. Cheggour, C.L.H. Thieme, Y. Qiao, Y.-Y. Xie, A. Goyal, Cryogenics 46, 432 (2006).

    Google Scholar 

  31. D.C. van der Laan, J. Ekin, Appl. Phys. Lett. 90, 0525061 (2007).

    Google Scholar 

  32. M.W. Rupich, X. Li, C. Thieme, S. Sathyamurthy, S. Fleshler, D. Tucker, E. Thompson, J. Schreiber, J. Lynch, D. Buczek, K. DeMoranville, J. Inch, P. Cedrone, J. Slack, Supercond. Sci. Technol. 23, 014015 (2010).

    Google Scholar 

  33. H.M. Kim, J. Jankowski, H. Lee, J. Bascuñan, Y. Iwasa, S. Fleshler, IEEE Trans. Appl. Supercond. 14, 1290 (2004).

    Google Scholar 

  34. V. Selvamanickam, A. Knoll, Y. Xie, Y. Li, Y. Chen, J. Reeves, X. Xiong, Y. Qiao, T. Salagaj, K. Lenseth, D. Hazelton, C. Reis, H. Yumura, C. Weber, IEEE Trans. Appl. Supercond. 15, 2596 (2005).

    Google Scholar 

  35. J. Voccio, C. King, D. Aized, C. Thieme, T. MacDonald, G. Snitchler, B. Gamble, A.P. Malozemoff, IEEE Trans. Appl. Supercond. 17, 1591 (2007).

    Google Scholar 

  36. A.P. Malozemoff, S. Annavarapu, L. Fritzemeier, Q. Li, V. Prunier, M. Rupich, C. Thieme, W. Zhang, A. Goyal, M. Paranthaman, D.F. Lee, Supercond. Sci. Technol. 13, 473 (2000).

    Google Scholar 

Download references

Acknowledgments

The author thanks David Larbalestier, Jason Fredette, and Leonardo Civale for a careful reading of the manuscript and many suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Malozemoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malozemoff, A.P. Electric power grid application requirements for superconductors. MRS Bulletin 36, 601–607 (2011). https://doi.org/10.1557/mrs.2011.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.160

Navigation