Skip to main content

Advertisement

Log in

Metal–organic frameworks for carbon dioxide capture

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Detailed report on MOFs for CO2 adsorption on the basis of ligands employed, OMSs, and structures. Systematic report on the high- and low-pressure CO2 capture. Report on the mechanism of CO2 capture.

A review on the promising field of MOF-based carbon capture and storage is presented. We discuss here the main features of MOFs applicable for CO2 capture and separation, the linker functionalization role, and the most important CO2-binding sites as also the most efficient and significant technologies, and a systematic report on the high- and low-pressure CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Table 1.
Table 2.
Figure 12.
Table 3.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Similar content being viewed by others

References

  1. Brian K.: Earth's CO2 Passes the 400 PPM Threshold-Maybe Permanently, 2016. Available at: http://www.scientificamerican.com/article/earth-s-co2-passes-the-400-ppm-threshold-maybe-permanently/ (accessed March 15, 2020).

    Google Scholar 

  2. COM(2011) 112: The Roadmap for Moving to a Competitive Low Carbon Economy in 2050 European Environmental Agency, 2011. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0112:FIN:EN:PDF/ (accessed March 3, 2020).

    Google Scholar 

  3. Allen M.R., Dube O.P., Solecki W., Aragón-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., and Zickfeld K.: Framing and context. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 2018. Available at: http://www.ipcc.ch/sr15/chapter/chapter-1// (accessed February 9, 2020).

  4. Sakakura T., Choi J.C., and Yasuda H.: Transformation of carbon dioxide. Chem. Rev. 107, 2365 (2007).

    CAS  Google Scholar 

  5. Zheng Q., Farrauto R., and Chau Nguyen A.: Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: A parametric study. Ind. Eng. Chem. Res. 55, 6768 (2016).

    CAS  Google Scholar 

  6. Duyar M.S., Treviño M.A.A., and Farrauto R.J.: Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B Environ. 168–169, 370 (2015).

    Google Scholar 

  7. Yoon Y., Hall A.S., and Surendranath Y.: Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282 (2016).

    CAS  Google Scholar 

  8. Williams P.J.L.B. and Laurens L.M.L.: Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 3, 554 (2010).

    CAS  Google Scholar 

  9. Hepburn C., Adlen E., Beddington J., Carter E.A., Fuss S., Mac Dowell N., Minx J.C., Smith P., and Williams C.K.: The technological and economic prospects for CO2 utilization and removal. Nature 575, 87 (2019).

    CAS  Google Scholar 

  10. Razzaq R., Li C., Usman M., Suzuki K., and Zhang S.: A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chem. Eng. J. 262, 1090 (2015).

    CAS  Google Scholar 

  11. Aziz M., Jalil A., Triwahyono S., Mukti R., Taufiq-Yap Y., Sazegar M., and Bahru J.: Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl. Catal. B Environ. 147, 359 (2014).

    CAS  Google Scholar 

  12. Du G., Lim S., Yang Y., Wang C., Pfefferle L., and Haller G.L.: Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. J. Catal. 249, 370 (2007).

    CAS  Google Scholar 

  13. Zhang X., Zhang X., Dong H., Zhao Z., Zhang S., and Huang Y.: Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 5, 6668 (2012).

    CAS  Google Scholar 

  14. Choi S., Drese J.H., and Jones C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796 (2009).

    CAS  Google Scholar 

  15. Mobley P.D., Rayer A.V., Tanthana J., Gohndrone T.R., Soukri M., Coleman L.J.I., and Lail M.: CO2 capture using fluorinated hydrophobic solvents. Ind. Eng. Chem. Res. 56, 11958 (2017).

    CAS  Google Scholar 

  16. Han Y. and Ho W.S.W.: Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 26, 2238 (2018).

    CAS  Google Scholar 

  17. Wahby A., Silvestre-Albero J., Sepúlveda-Escribano A., and Rodríguez-Reinoso F.: CO2 adsorption on carbon molecular sieves. Microporous Mesoporous Mater. 164, 280 (2012).

    CAS  Google Scholar 

  18. Maina J.W., Pozo-Gonzalo C., Kong L., Schütz J., Hill M., and Dumée L.F.: Metal organic framework based catalysts for CO2 conversion. Mater. Horiz. 4, 345 (2017).

    CAS  Google Scholar 

  19. Ozdemir J., Mosleh I., Abolhassani M., and Greenlee L.F.: Covalent organic frameworks for the capture, fixation, or reduction of CO2. Front. Energy Res. 7, 77 (2019).

    Google Scholar 

  20. Zhou H.C.J. and Kitagawa S.: Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014).

    CAS  Google Scholar 

  21. Cao S.: Metal-organic frameworks: A new class of crystalline porous materials. Johnson Matthey Technol. Rev. 59, 123 (2015).

    Google Scholar 

  22. Seyyedi B. and Bordiga S.: Metal-Organic Frameworks:A New Class of Crystalline Porous Materials Hybrid Materials for Storage and Purification of Small Gaseous Molecules. LAP LAMBERT Academic Publishing, Riga, Latvia, (2014).

    Google Scholar 

  23. Long J.R. and Yaghi O.M.: The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213 (2009).

    CAS  Google Scholar 

  24. Eddaoudi M., Moler D.B., Li H., Chen B., Reineke T.M., O'Keeffe M., and Yaghi O.M.: Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319 (2001).

    CAS  Google Scholar 

  25. Zhou H.C., Long J.R., and Yaghi O.M.: Introduction to metal-organic frameworks. Chem. Rev. 112, 673 (2012).

    CAS  Google Scholar 

  26. Lu W., Wei Z., Gu Z.Y., Liu T.F., Park J., Park J., Tian J., Zhang M., Zhang Q., Gentle T., Bosch M., and Zhou H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014).

    CAS  Google Scholar 

  27. Ding M., Flaig R.W., Jiang H.L., and Yaghi O.M.: Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783 (2019).

    CAS  Google Scholar 

  28. Stock N. and Biswas S.: Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933 (2012).

    CAS  Google Scholar 

  29. Tranchemontagne D.J., Mendoza-Cortés J.L., O'Keeffe M., and Yaghi O.M.: Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1257 (2009).

    CAS  Google Scholar 

  30. Kim J., Chen B., Reineke T.M., Li H., Eddaoudi M., Moler D.B., O'Keeffe M., and Yaghi O.M.: Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8239 (2001).

    CAS  Google Scholar 

  31. Mokhatab S., Poe W.A., Mak J.Y., Mokhatab S., Poe W.A., and Mak J.Y.: Natural gas dehydration. In Handbook of Natural Gas Transmission and Process, Ch. 7, pp. 223 (Mokhatab S., Poe S. and Mak J.Y., eds. (Elsevier, Killington, 2015).

    Google Scholar 

  32. Sircar S.: Heat of adsorption on heterogeneous adsorbents. Appl. Surf. Sci. 252, 647 (2005).

    CAS  Google Scholar 

  33. Czepirski L. and JagieŁŁo J.: Virial-type thermal equation of gas-solid adsorption. Chem. Eng. Sci. 44, 797 (1989).

    CAS  Google Scholar 

  34. Inglezakis V.J. and Zorpas A.A.: Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin. Water Treat. 39, 149 (2012).

    CAS  Google Scholar 

  35. Lee W.R., Jo H., Yang L.M., Lee H., Ryu D.W., Lim K.S., Song J.H., Min D.Y., Han S.S., Seo J.G., Park Y.K., Moon D., and Hong C.S.: Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework. Chem. Sci. 6, 3697 (2015).

    CAS  Google Scholar 

  36. McDonald T.M., Mason J.A., Kong X., Bloch E.D., Gygi D., Dani A., Crocellà V., Giordanino F., Odoh S.O., Drisdell W.S., Vlaisavljevich B., Dzubak A.L., Poloni R., Schnell S.K., Planas N., Lee K., Pascal T., Wan L.F., Prendergast D., Neaton J.B., Smit B., Kortright J.B., Gagliardi L., Bordiga S., Renner J.A., and Long J.R.: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).

    CAS  Google Scholar 

  37. Mcguirk C.M., Siegelman R.L., Drisdell W.S., Runčevski T., Milner P.J., Oktawiec J., Wan L.F., Su G.M., Jiang H.Z.H., Reed D.A., Gonzalez M.I., Prendergast D., and Long J.R.: Cooperative adsorption of carbon disulfide in diamine-appended metal-organic frameworks. Nat. Commun 9, 5133 (2018).

    Google Scholar 

  38. Principe I.A. and Fletcher A.J.: Adsorption selectivity of CO2 over CH4, N2 and H2 in melamine–resorcinol–formaldehyde xerogels. Adsorption 23, 723–735 (2020).

    Google Scholar 

  39. Mukherjee S., Kumar A., and Zaworotko M.J.: 2-Metal-organic framework based carbon capture and purification technologies for clean environment. In Metal-Organic Frameworks (MOFs) for Environmental Applications, (Elsevier, Amsterdam, 2019), pp. 5–61.

    Google Scholar 

  40. Myers A.L. and Prausnitz J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121 (1965).

    CAS  Google Scholar 

  41. Myers A.L.: Thermodynamics of adsorption. In Chemical Thermodynamics for Industry (Royal Society of Chemistry, 2007).

    Google Scholar 

  42. Helfferich F.G.: Principles of adsorption and adsorption processes. AIChE J. 31, 523 (1985).

    Google Scholar 

  43. Misra D.N.: New adsorption isotherm for heterogeneous surfaces. J. Chem. Phys. 52, 5499 (1970).

    CAS  Google Scholar 

  44. Parmar B., Patel P., Pillai R.S., Tak R.K., Kureshy R.I., Khan N.H., and Suresh E.: Cycloaddition of CO2 with an epoxide-bearing oxindole scaffold by a metal–organic framework-based heterogeneous catalyst under ambient conditions. Inorg. Chem. 58, 10084 (2019).

    CAS  Google Scholar 

  45. Ge X. and Ma S.: CO2 capture and separation of metal–organic frameworks. Mater. Carbon Capture 2050, 5 (2020).

    Google Scholar 

  46. Loiseau T., Lecroq L., Volkringer C., Marrot J., Ferey G., Haouas M., Taulelle F., Bourrelly S., Llewellyn P.L., and Latroche M.: MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223 (2006).

    CAS  Google Scholar 

  47. Xue M., Ma S., Jin Z., Schaffino R.M., Zhu G.S., Lobkovsky E.B., Qiu S.L., and Chen B.: Robust metal-organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. Inorg. Chem. 47, 6825 (2008).

    CAS  Google Scholar 

  48. Britt D., Furukawa H., Wang B., Glover T.G., and Yaghi O.M.: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. USA 106, 20637 (2009).

  49. Chen B., Ma S., Zapata F., Fronczek F.R., Lobkovsky E.B., and Zhou H.C.: Rationally designed micropores within a metal−organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233 (2007).

    CAS  Google Scholar 

  50. Yuan B., Ma D., Wang X., Li Z., Li Y., Liu H., and He D.: A microporous, moisture-stable, and amine-functionalized metal-organic framework for highly selective separation of CO2 from CH4. Chem. Commun. 48, 1135 (2012).

    CAS  Google Scholar 

  51. Sircar S.: Pressure swing adsorption. Ind. Eng. Chem. Res. 41, 1389 (2002).

    CAS  Google Scholar 

  52. Kikkinides E.S., Yang R.T., and Cho S.H.: Concentration and recovery of CO2 from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32, 2714 (1993).

    CAS  Google Scholar 

  53. Chou C.T. and Chen C.Y.: Carbon dioxide recovery by vacuum swing adsorption. Sep. Purif. Technol. 39, 51 (2004).

    CAS  Google Scholar 

  54. Zhang J., Webley P.A., and Xiao P.: Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manage. 49, 346 (2008).

    CAS  Google Scholar 

  55. Mason J.A., Sumida K., Herm Z.R., Krishna R., and Long J.R.: Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030 (2011).

    CAS  Google Scholar 

  56. Greathouse J.A. and Allendorf M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678 (2006).

    CAS  Google Scholar 

  57. Liu J., Wang Y., Benin A.I., Jakubczak P., Willis R.R., and LeVan M.D.: CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26, 14301 (2010).

    CAS  Google Scholar 

  58. Devic T. and Serre C.: High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097 (2014).

    CAS  Google Scholar 

  59. Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O'Keeffe M., and Yaghi O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186 (2006).

  60. Demessence A., D'Alessandro D.M., Foo M.L., and Long J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784 (2009).

    CAS  Google Scholar 

  61. Han S.S., Jung D.H., and Heo J.: Interpenetration of metal organic frameworks for carbon dioxide capture and hydrogen purification: Good or bad? J. Phys. Chem. C 117, 71 (2013).

    CAS  Google Scholar 

  62. Zhang W., Huang H., Zhong C., and Liu D.: Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: A combined experimental and molecular simulation study. Phys. Chem. Chem. Phys. 14, 2317 (2012).

    CAS  Google Scholar 

  63. Mohamed M.H., Elsaidi S.K., Wojtas L., Pham T., Forrest K.A., Tudor B., Space B., and Zaworotko M.J.: Highly selective CO2 uptake in uninodal 6-connected ‘mmo’ nets based upon MO4 (M = Cr, Mo) pillars. J. Am. Chem. Soc. 134, 19556 (2012).

    CAS  Google Scholar 

  64. Ahmad M., Sharma M.K., Das R., Poddar P., and Bharadwaj P.K.: Syntheses, crystal structures, and magnetic properties of metal-organic hybrid materials of Co(II) using flexible and rigid nitrogen-based ditopic ligands as spacers. Cryst. Growth Des. 12, 1571 (2012).

    CAS  Google Scholar 

  65. Kim T.K., Lee K.J., Choi M., Park N., Moon D., and Moon H.R.: Metal-organic frameworks constructed from flexible ditopic ligands: Conformational diversity of an aliphatic ligand. New J. Chem. 37, 4130 (2013).

    CAS  Google Scholar 

  66. Zhao Y., Wu H., Emge T.J., Gong Q., Nijem N., Chabal Y.J., Kong L., Langreth D.C., Liu H., Zeng H., and Li J.: Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures. Chem. Eur. J. 17, 5101 (2011).

    CAS  Google Scholar 

  67. Liu H., Zhao Y., Zhang Z., Nijem N., Chabal Y.J., Zeng H., and Li J.: The effect of methyl functionalization on microporous metal-organic frameworks’ capacity and binding energy for carbon dioxide adsorption. Adv. Funct. Mater. 21, 4754 (2011).

    CAS  Google Scholar 

  68. Ahnfeldt T., Guillou N., Gunzelmann D., Margiolaki I., Loiseau T., Férey G., Senker J., and Stock N.: [Al4(OH)2(OCH3)4(H2N- Bdc)3]⋅xH2O: A 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew. Chem. Int. Ed. 48, 5163 (2009).

    CAS  Google Scholar 

  69. Singh Dhankhar S., Sharma N., Kumar S., Dhilip Kumar T.J., and Nagaraja C.M.: Rational design of a bifunctional, two-fold interpenetrated Zn(II)-metal–organic framework for selective adsorption of CO2 and efficient aqueous phase sensing of 2,4,6-trinitrophenol. Chem. Eur. J. 23, 16204 (2017).

    CAS  Google Scholar 

  70. Fracaroli A.M., Furukawa H., Suzuki M., Dodd M., Okajima S., Gándara F., Reimer J.A., and Yaghi O.M.: Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863 (2014).

    CAS  Google Scholar 

  71. Deng H., Grunder S., Cordova K.E., Valente C., Furukawa H., Hmadeh M., Gándara F., Whalley A.C., Liu Z., Asahina S., Kazumori H., O'Keeffe M., Terasaki O., Stoddart J.F., and Yaghi O.M.: Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018 (2012).

    CAS  Google Scholar 

  72. Vismara R., Tuci G., Mosca N., Domasevitch K.V., Di Nicola C., Pettinari C., Giambastiani G., Galli S., and Rossin A.: Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).

    CAS  Google Scholar 

  73. Li Y., Zhang X., Lan J., Xu P., and Sun J.: Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorg. Chem. 58, 13917 (2019).

    CAS  Google Scholar 

  74. Lee W.R., Hwang S.Y., Ryu D.W., Lim K.S., Han S.S., Moon D., Choi J., and Hong C.S.: Diamine-functionalized metal-organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744 (2014).

    CAS  Google Scholar 

  75. Vaidhyanathan R., Iremonger S.S., Dawson K.W., and Shimizu G.K.H.: An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 5230 (2009).

    Google Scholar 

  76. Siegelman R.L., McDonald T.M., Gonzalez M.I., Martell J.D., Milner P.J., Mason J.A., Berger A.H., Bhown A.S., and Long J.R.: Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks. J. Am. Chem. Soc. 139, 10526 (2017).

    CAS  Google Scholar 

  77. Flaig R.W., Osborn Popp T.M., Fracaroli A.M., Kapustin E.A., Kalmutzki M.J., Altamimi R.M., Fathieh F., Reimer J.A., and Yaghi O.M.: The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 139, 12125 (2017).

    CAS  Google Scholar 

  78. Huang X., Lu J., Wang W., Wei X., and Ding J.: Experimental and computational investigation of CO2 capture on amine grafted metal-organic framework NH2-MIL-101. Appl. Surf. Sci. 371, 307 (2016).

    CAS  Google Scholar 

  79. Fu Q., Ding J., Wang W., Lu J., and Huang Q.: Carbon dioxide adsorption over amine-functionalized MOFs. Energy Proc. 142, 2152 (2017).

  80. Xian S., Wu Y., Wu J., Wang X., and Xiao J.: Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. Ind. Eng. Chem. Res. 54, 11151 (2015).

    CAS  Google Scholar 

  81. Chowdhury P., Mekala S., Dreisbach F., and Gumma S.: Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater. 152, 246 (2012).

    CAS  Google Scholar 

  82. Munusamy K., Sethia G., Patil D.V., Somayajulu Rallapalli P.B., Somani R.S., and Bajaj H.C.: Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies. Chem. Eng. J. 195–196, 359 (2012).

    Google Scholar 

  83. Nandi S., Haldar S., Chakraborty D., and Vaidhyanathan R.: Strategically designed azolyl-carboxylate MOFs for potential humid CO2 capture. J. Mater. Chem. A 5, 535 (2017).

    CAS  Google Scholar 

  84. Wang H.H., Jia L.N., Hou L., Shi W.J., Zhu Z., and Wang Y.Y.: A new porous MOF with two uncommon metal-carboxylate-pyrazolate clusters and high CO2/N2 selectivity. Inorg. Chem. 54, 1841 (2015).

    CAS  Google Scholar 

  85. Li Y.Z., Wang H.H., Yang H.Y., Hou L., Wang Y.Y., and Zhu Z.: An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chem. Eur. J. 24, 865 (2018).

    CAS  Google Scholar 

  86. Shao Y.L., Cui Y.H., Gu J.Z., Wu J., Wang Y.W., and Kirillov A.M.: Exploring biphenyl-2,4,4′-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm 18, 765 (2016).

    CAS  Google Scholar 

  87. He T., Zhang Y.-Z., Wu H., Kong X.-J., Liu X.-M., Xie L.-H., Dou Y., and Li J.-R.: Functionalized base-stable metal-organic frameworks for selective CO2 adsorption and proton conduction. ChemPhysChem 18, 3245 (2017).

    CAS  Google Scholar 

  88. Zhou F., Zhou J., Gao X., Kong C., and Chen L.: Facile synthesis of MOFs with uncoordinated carboxyl groups for selective CO2 capture via postsynthetic covalent modification. RSC Adv. 7, 3713 (2017).

    CAS  Google Scholar 

  89. Bolotov V.A., Kovalenko K.A., Samsonenko D.G., Han X., Zhang X., Smith G.L., McCormick L.J., Teat S.J., Yang S., Lennox M.J., Henley A., Besley E., Fedin V.P., Dybtsev D.N., and Schröder M.: Enhancement of CO2 uptake and selectivity in a metal-organic framework by the incorporation of thiophene functionality. Inorg. Chem. 57, 5074 (2018).

    CAS  Google Scholar 

  90. Wu T., Shen L., Luebbers M., Hu C., Chen Q., Ni Z., and Masel R.I.: Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups. Chem. Commun. 46, 6120 (2010).

    CAS  Google Scholar 

  91. Atzori C., Lomachenko K.A., Øien-ØDegaard S., Lamberti C., Stock N., Barolo C., and Bonino F.: Disclosing the properties of a new Ce(III)-Based MOF: Ce2(NDC)3(DMF)2. Cryst. Growth Des. 19, 787 (2019).

    CAS  Google Scholar 

  92. Gassensmith J.J., Furukawa H., Smaldone R.A., Forgan R.S., Botros Y.Y., Yaghi O.M., and Stoddart J.F.: Strong and reversible binding of carbon dioxide in a green metal-organic framework. J. Am. Chem. Soc. 133, 15312 (2011).

    CAS  Google Scholar 

  93. Pettinari C., Galli S., and Ta A.: Coordination polymers and metal-organic frameworks built up with poly(tetrazolate)ligands. Coord. Chem. Rev. 372, 1 (2018).

    Google Scholar 

  94. Baima J., Macchieraldo R., Pettinari C., and Casassa S.: Ab initio investigation of the affinity of novel bipyrazolate-based MOFs towards H2 and CO2. CrystEngComm 17, 448 (2015).

    CAS  Google Scholar 

  95. Li G.-P., Liu G., Li Y.-Z., Hou L., Wang Y.-Y., and Zhu Z.: Uncommon pyrazoyl-carboxyl bifunctional ligand-based microporous lanthanide systems: Sorption and luminescent sensing properties. Inorg. Chem. 55, 3952 (2016).

    CAS  Google Scholar 

  96. He T., Zhang Y.Z., Wang B., Lv X.L., Xie L.H., and Li J.R.: A base-resistant ZnII-based metal–organic framework: Synthesis, structure, postsynthetic modification, and gas adsorption. ChemPlusChem 81, 864 (2016).

    CAS  Google Scholar 

  97. Vismara R., Tuci G., Tombesi A., Domasevitch K.V., Di Nicola C., Giambastiani G., Chierotti M.R., Bordignon S., Gobetto R., Pettinari C., Rossin A., and Galli S.: Tuning carbon dioxide adsorption affinity of zinc(II) MOFs by mixing bis(pyrazolate) ligands with N-containing tags. ACS Appl. Mater. Interfaces 11, 26956 (2019).

    CAS  Google Scholar 

  98. Pettinari C., Tǎbǎcaru A., Boldog I., Domasevitch K.V., Galli S., and Masciocchi N.: Novel coordination frameworks incorporating the 4,4′-bipyrazolyl ditopic ligand. Inorg. Chem. 51, 5235 (2012).

    CAS  Google Scholar 

  99. Mosca N., Vismara R., Fernandes J.A., Tuci G., DiNicola C., Domasevitch K.V., Giacobbe C., Giambastiani G., Pettinari C., Aragones-Anglada M., Moghadam P.Z., Fairen-Jimenez D., Rossin A., and Galli S.: Nitro-functionalized bis(pyrazolate) metal-organic frameworks as carbon dioxide capture materials under ambient conditions. Chem. Eur. J. 24, 13170 (2018).

    CAS  Google Scholar 

  100. Desai A.V., Sharma S., Let S., and Ghosh S.K.: N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 395, 146 (2019).

    CAS  Google Scholar 

  101. Park J., Yuan D., Pham K.T., Li J.R., Yakovenko A., and Zhou H.C.: Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc. 134, 99 (2012).

    CAS  Google Scholar 

  102. Song C., Ling Y., Jin L., Zhang M., Chen D.L., and He Y.: CO2 adsorption of three isostructural metal-organic frameworks depending on the incorporated highly polarized heterocyclic moieties. Dalton Trans. 45, 190 (2015).

    Google Scholar 

  103. Vogiatzis K.D., Mavrandonakis A., Klopper W., and Froudakis G.E.: Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10, 374 (2009).

    CAS  Google Scholar 

  104. An J., Geib S.J., and Rosi N.L.: Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc. 131, 8376 (2009).

    CAS  Google Scholar 

  105. An J., Geib S.J., and Rosi N.L.: High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38 (2010).

    CAS  Google Scholar 

  106. Wang Y., Huang N.Y., Shen J.Q., Liao P.Q., Chen X.M., and Zhang J.P.: Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 140, 38 (2018).

    CAS  Google Scholar 

  107. Yang Q., Wiersum A.D., Llewellyn P.L., Guillerm V., Serre C., and Maurin G.: Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: A computational exploration. Chem. Commun. 47, 9603 (2011).

    CAS  Google Scholar 

  108. Yang J., Yan X., Xue T., and Liu Y.: Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework. RSC Adv. 6, 55266 (2016).

    CAS  Google Scholar 

  109. Wang Z.J., Han L.J., Gao X.J., and Zheng H.G.: Three Cd(II) MOFs with different functional groups: Selective CO2 capture and metal ions detection. Inorg. Chem. 57, 5232 (2018).

    CAS  Google Scholar 

  110. Qian J., Shen J., Li Q., Hu Y., and Huang S.: Selective adsorption behaviour of carbon dioxide in OH-functionalized metal-organic framework materials. CrystEngComm 19, 5346 (2017).

    CAS  Google Scholar 

  111. Kanoo P., Ghosh A.C., Cyriac S.T., and Maji T.K.: A metal-organic framework with highly polar pore surfaces: Selective CO2 adsorption and guest-dependent on/off emission properties. Chem. Eur. J. 18, 237 (2012).

    CAS  Google Scholar 

  112. Zheng B., Bai J., Duan J., Wojtas L., and Zaworotko M.J.: Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133, 748 (2011).

    CAS  Google Scholar 

  113. Zheng B., Yang Z., Bai J., Li Y., and Li S.: High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chem. Commun. 48, 7025 (2012).

    CAS  Google Scholar 

  114. Millward A.R. and Yaghi O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005).

    CAS  Google Scholar 

  115. Furukawa H., Ko N., Go Y.B., Aratani N., Choi S.B., Choi E., Yazaydin A.Ö., Snurr R.Q., O'Keeffe M., Kim J., and Yaghi O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424 (2010).

    CAS  Google Scholar 

  116. Chen C., Zhang M., Zhang W., and Bai J.: Stable amide-functionalized metal-organic framework with highly selective CO adsorption. Inorg. Chem. 58, 2729 (2019).

    CAS  Google Scholar 

  117. Lu Z., Xing H., Sun R., Bai J., Zheng B., and Li Y.: Water stable metal-organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 12, 1081 (2012).

    CAS  Google Scholar 

  118. Benson O., Da Silva I., Argent S.P., Cabot R., Savage M., Godfrey H.G.W., Yan Y., Parker S.F., Manuel P., Lennox M.J., Mitra T., Easun T.L., Lewis W., Blake A.J., Besley E., Yang S., and Schröder M.: Amides do not always work: Observation of guest binding in an amide-functionalized porous metal-organic framework. J. Am. Chem. Soc. 138, 14828 (2016).

    CAS  Google Scholar 

  119. Moreau F., Da Silva I., Al Smail N.H., Easun T.L., Savage M., Godfrey H.G.W., Parker S.F., Manuel P., Yang S., and Schröder M.: Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nat. Commun. 8, 14085 (2017).

    CAS  Google Scholar 

  120. Li X.Y., Li Y.Z., Yang Y., Hou L., Wang Y.Y., and Zhu Z.: Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chem. Commun. 53, 12970 (2017).

    CAS  Google Scholar 

  121. Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., and Yaghi O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939 (2008).

    CAS  Google Scholar 

  122. Banerjee R., Furukawa H., Britt D., Knobler C., O'Keeffe M., and Yaghi O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875 (2009).

    CAS  Google Scholar 

  123. Dau P.V. and Cohen S.M.: The influence of nitro groups on the topology and gas sorption property of extended Zn(II)-paddlewheel MOFs. CrystEngComm 15, 9304 (2013).

    CAS  Google Scholar 

  124. Deng H., Doonan C.J., Furukawa H., Ferreira R.B., Towne J., Knobler C.B., Wang B., and Yaghi O.M.: Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846 (2010).

    CAS  Google Scholar 

  125. Panyarat K., Surinwong S., Prior T.J., Konno T., and Rujiwatra A.: Crystal structures and gas adsorption behavior of new lanthanide-benzene-1,4-dicarboxylate frameworks. Microporous Mesoporous Mater. 251, 155 (2017).

    CAS  Google Scholar 

  126. Yoon M. and Moon D.: New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous Mesoporous Mater. 215, 116 (2015).

    CAS  Google Scholar 

  127. Parshamoni S., Sanda S., Jena H.S., and Konar S.: A copper based pillared-bilayer metal organic framework: Its synthesis, sorption properties and catalytic performance. Dalton Trans. 43, 7191 (2014).

    CAS  Google Scholar 

  128. Bao Z., Yu L., Ren Q., Lu X., and Deng S.: Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549 (2011).

    CAS  Google Scholar 

  129. Biswas S., Ahnfeldt T., and Stock N.: New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: Syntheses, characterization, sorption, and breathing behavior. Inorg. Chem. 50, 9518 (2011).

    CAS  Google Scholar 

  130. Pal T.K., De D., Senthilkumar S., Neogi S., and Bharadwaj P.K.: A partially fluorinated, water-stable Cu(II)-MOF derived via transmetalation: Significant gas adsorption with high CO2 selectivity and catalysis of Biginelli reactions. Inorg. Chem. 55, 7835 (2016).

    CAS  Google Scholar 

  131. Noro S. and Nakamura T.: Fluorine-functionalized metal–organic frameworks and porous coordination polymers. NPG Asia Mater. 9, 433 (2017).

    Google Scholar 

  132. Alduhaish O., Lin R.B., Wang H., Li B., Arman H.D., Hu T.L., and Chen B.: Metal-organic framework with trifluoromethyl groups for selective C2H2 and CO2 adsorption. Cryst. Growth Des. 18, 4522 (2018).

    CAS  Google Scholar 

  133. Gupta A.K., De D., Tomar K., and Bharadwaj P.K.: A Cu(II) metal-organic framework with significant H2 and CO2 storage capacity and heterogeneous catalysis for the aerobic oxidative amination of C(sp)-H bonds and Biginelli reactions. Dalton Trans. 47, 1624 (2018).

    CAS  Google Scholar 

  134. Deria P., Mondloch J.E., Tylianakis E., Ghosh P., Bury W., Snurr R.Q., Hupp J.T., and Farha O.K.: Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc. 135, 16801 (2013).

    CAS  Google Scholar 

  135. Chen K.J., Scott H.S., Madden D.G., Pham T., Kumar A., Bajpai A., Lusi M., Forrest K.A., Space B., Perry J.J., and Zaworotko M.J.: Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 1, 753 (2016).

    CAS  Google Scholar 

  136. Kondo A., Noguchi H., Ohnishi S., Kajiro H., Tohdoh A., Hattori Y., Xu W.C., Tanaka H., Kanoh H., and Kaneko K.: Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett. 6, 2581 (2006).

    CAS  Google Scholar 

  137. Nugent P., Rhodus V., Pham T., Tudor B., Forrest K., Wojtas L., Space B., and Zaworotko M.: Enhancement of CO2 selectivity in a pillared pcu mom platform through pillar substitution. Chem. Commun. 49, 1606 (2013).

    CAS  Google Scholar 

  138. Elsaidi S.K., Mohamed M.H., Schaef H.T., Kumar A., Lusi M., Pham T., Forrest K.A., Space B., Xu W., Halder G.J., Liu J., Zaworotko M.J., and Thallapally P.K.: Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas. Chem. Commun. 51, 15530 (2015).

    CAS  Google Scholar 

  139. Burd S.D., Ma S., Perman J.A., Sikora B.J., Snurr R.Q., Thallapally P.K., Tian J., Wojtas L., and Zaworotko M.J.: Highly selective carbon dioxide uptake by [Cu(bpy)2(SiF6)] (bpy-1 = 4,4′-bipyridine; Bpy = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 134, 3663 (2012).

    CAS  Google Scholar 

  140. Noro S.I., Fukuhara K., Hijikata Y., Kubo K., and Nakamura T.: Rational synthesis of a porous copper(II) coordination polymer bridged by weak Lewis-base inorganic monoanions using an anion-mixing method. Inorg. Chem. 52, 5630 (2013).

    CAS  Google Scholar 

  141. Iremonger S.S., Liang J., Vaidhyanathan R., Martens I., Shimizu G.K.H., Thomas D.D., Aghaji M.Z., Yeganegi S., and Woo T.K.: Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks. J. Am. Chem. Soc. 133, 20048 (2011).

    CAS  Google Scholar 

  142. Zhao X., Bell J.G., Tang S.F., Li L., and Thomas K.M.: Kinetic molecular sieving, thermodynamic and structural aspects of gas/vapor sorption on metal organic framework [Ni1.5(4,4′-bipyridine)1.5(H3L)(H2O)3][H2O]7 where H6L = 2,4,6-trimethylbenzene-1,3,5-triyl tris(methylene)triphosphonic acid. J. Mater. Chem. A 4, 1353 (2016).

    CAS  Google Scholar 

  143. Llewellyn P.L., Garcia-Rates M., Gaberová L., Miller S.R., Devic T., Lavalley J.C., Bourrelly S., Bloch E., Filinchuk Y., Wright P.A., Serre C., Vimont A., and Maurin G.: Structural origin of unusual CO2 adsorption behavior of a small-pore aluminum bisphosphonate MOF. J. Phys. Chem. C 119, 4208 (2015).

    CAS  Google Scholar 

  144. Dau P.V., Polanco L.R., and Cohen S.M.: Dioxole functionalized metal-organic frameworks. Dalton Trans. 42, 4013 (2013).

    CAS  Google Scholar 

  145. Kim T.K. and Suh M.P.: Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. Chem. Commun. 47, 4258 (2011).

    CAS  Google Scholar 

  146. Henke S., Schmid R., Grunwaldt J.D., and Fischer R.A.: Flexibility and sorption selectivity in rigid metal-organic frameworks: The impact of ether-functionalised linkers. Chem. Eur. J. 16, 14296 (2010).

    CAS  Google Scholar 

  147. Grajciar L., Wiersum A.D., Llewellyn P.L., Chang J.S., and Nachtigall P.: Understanding CO2 adsorption in CuBTC MOF: Comparing combined DFT-ab initio calculations with microcalorimetry experiments. J. Phys. Chem. C 115, 17925 (2011).

    CAS  Google Scholar 

  148. Dietzel P.D.C., Johnsen R.E., Fjellvåg H., Bordiga S., Groppo E., Chavan S., and Blom R.: Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem. Commun. 5125 (2008).

    Google Scholar 

  149. Queen W.L., Brown C.M., Britt D.K., Zajdel P., Hudson M.R., and Yaghi O.M.: Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. J. Phys. Chem. C 115, 24915 (2011).

    CAS  Google Scholar 

  150. Queen W.L., Hudson M.R., Bloch E.D., Mason J.A., Gonzalez M.I., Lee J.S., Gygi D., Howe J.D., Lee K., Darwish T.A., James M., Peterson V.K., Teat S.J., Smit B., Neaton J.B., Long J.R., and Brown C.M.: Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu. Zn). Chem. Sci. 5, 4569 (2014).

    CAS  Google Scholar 

  151. Liang L., Liu C., Jiang F., Chen Q., Zhang L., Xue H., Jiang H.L., Qian J., Yuan D., and Hong M.: Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8, 1 (2017).

    Google Scholar 

  152. Chen Y.F., Nalaparaju A., Eddaoudi M., and Jiang J.W.: CO2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study. Langmuir 28, 3903 (2012).

    CAS  Google Scholar 

  153. Yazaydin A.Ö., Snurr R.Q., Park T.H., Koh K., Liu J., LeVan M.D., Benin A.I., Jakubczak P., Lanuza M., Galloway D.B., Low J.J., and Willis R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198 (2009).

    CAS  Google Scholar 

  154. Valenzano L., Civalleri B., Chavan S., Palomino G.T., Areán C.O., and Bordiga S.: Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74. J. Phys. Chem. C 114, 11185 (2010).

    CAS  Google Scholar 

  155. Liu Y., Hu J., Ma X., Liu J., and Lin Y.S.: Mechanism of CO2 adsorption on Mg/DOBDC with elevated CO2 loading. Fuel 181, 340 (2016).

    CAS  Google Scholar 

  156. McDonald T.M., Lee W.R., Mason J.A., Wiers B.M., Hong C.S., and Long J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056 (2012).

    CAS  Google Scholar 

  157. Vlaisavljevich B., Odoh S.O., Schnell S.K., Dzubak A.L., Lee K., Planas N., Neaton J.B., Gagliardi L., and Smit B.: CO2 induced phase transitions in diamine-appended metal-organic frameworks. Chem. Sci. 6, 5177 (2015).

    CAS  Google Scholar 

  158. Xie H.B., Zhou Y., Zhang Y., and Johnson J.K.: Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J. Phys. Chem. A 114, 11844 (2010).

    CAS  Google Scholar 

  159. Planas N., Dzubak A.L., Poloni R., Lin L.C., McManus A., McDonald T.M., Neaton J.B., Long J.R., Smit B., and Gagliardi L.: The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J. Am. Chem. Soc. 135, 7402 (2013).

    CAS  Google Scholar 

  160. Mason J.A., McDonald T.M., Bae T.H., Bachman J.E., Sumida K., Dutton J.J., Kaye S.S., and Long J.R.: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787 (2015).

    CAS  Google Scholar 

  161. Arstad B., Fjellvåg H., Kongshaug K.O., Swang O., and Blom R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755 (2008).

    CAS  Google Scholar 

  162. Lin Q., Wu T., Zheng S.T., Bu X., and Feng P.: Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. J. Am. Chem. Soc. 134, 784 (2012).

    CAS  Google Scholar 

  163. Maji T.K., Uemura K., Chang H.C., Matsuda R., and Kitagawa S.: Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. Angew. Chem. Int. Ed. 43, 3269 (2004).

    CAS  Google Scholar 

  164. Wriedt M., Sculley J.P., Yakovenko A.A., Ma Y., Halder G.J., Balbuena P.B., and Zhou H.C.: Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap. Angew. Chem. Int. Ed. 51, 9804 (2012).

    CAS  Google Scholar 

  165. Chen B., Ma S., Zapata F., Fronczek F.R., Lobkovsky E.B., and Zhou H.C.: Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233 (2007).

    CAS  Google Scholar 

  166. Li J.R., Yu J., Lu W., Sun L.B., Sculley J., Balbuena P.B., and Zhou H.C.: Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun. 4, 1 (2013).

    Google Scholar 

  167. Zhao P., Fang H., Mukhopadhyay S., Li A., Rudić S., McPherson I.J., Tang C.C., Fairen-Jimenez D., Tsang S.C.E., and Redfern S.A.T.: Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure. Nat. Commun. 10, 1 (2019).

    Google Scholar 

  168. Kukulka W., Cendrowski K., Michalkiewicz B., and Mijowska E.: MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 9, 18527 (2019).

    CAS  Google Scholar 

  169. Wang M., Lawal A., Stephenson P., Sidders J., and Ramshaw C.: Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 89, 1609 (2011).

    CAS  Google Scholar 

  170. Sircar S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435 (2006).

    CAS  Google Scholar 

  171. Lee K.B. and Sircar S.: Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AIChE J. 54, 2293 (2008).

    CAS  Google Scholar 

  172. Bhattacharyya D. and Miller D.C.: Post-combustion CO2 capture technologies — a review of processes for solvent-based and sorbent-based CO2 capture. Curr. Opin. Chem. Eng. 17, 78 (2017).

    Google Scholar 

  173. Wang Y., Zhao L., Otto A., Robinius M., and Stolten D.: A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Proc. 114, 650 (2017).

  174. Higman C.: Gasification. In Combustion Engineering Issues for Solid Fuel Systems, Ch. 11, (Academic Press, Elsevier Inc., 2008), pp. 423–468.

    Google Scholar 

  175. Damle A.: An introduction to the utilization of membrane technology in the production of clean and renewable power.In Membranes for Clean and Renewable Power Applications, Gugliuzza A and Basile A, eds. (Woodhead publishing, Elsevier Ltd, 2013), pp. 3–43.

    Google Scholar 

  176. Plasynski S.I., Litynski J.T., McIlvried H.G., and Srivastava R.D.: Progress and new developments in carbon capture and storage. CRC Crit. Rev. Plant Sci. 28, 123 (2009).

    CAS  Google Scholar 

  177. Agarwal A., Biegler L.T., and Zitney S.E.: Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture. Ind. Eng. Chem. Res. 49, 5066 (2010).

    CAS  Google Scholar 

  178. Salles F., Kolokolov D.I., Jobic H., Maurin G., Llewellyn P.L., Devic T., Serre C., and Ferey G.: Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(cr): A combination of microcalorimetry and QENS experiments with molecular simulations. J. Phys. Chem. C 113, 7802 (2009).

    CAS  Google Scholar 

  179. Dietzel P.D.C., Besikiotis V., and Blom R.: Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362 (2009).

    CAS  Google Scholar 

  180. Herm Z.R., Swisher J.A., Smit B., Krishna R., and Long J.R.: Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664 (2011).

    CAS  Google Scholar 

  181. Tranchemontagne D.J., Hunt J.R., and Yaghi O.M.: Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553 (2008).

    CAS  Google Scholar 

  182. Sumida K., Hill M.R., Horike S., Dailly A., and Long J.R.: Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 1, 15120 (2009).

    Google Scholar 

  183. Choi H.J., Dinca M., and Long J.R.: Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848 (2008).

    CAS  Google Scholar 

  184. Demessence A., D'alessandro D.M., Foo L., and Long J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 29 (2009).

    Google Scholar 

  185. Caskey S.R., Wong-Foy A.G., and Matzger A.J.: Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870 (2008).

    CAS  Google Scholar 

  186. Perez E.V., Balkus K.J., Ferraris J.P., and Musselman I.H.: Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165 (2009).

    CAS  Google Scholar 

  187. Wang S., Yang L., He G., Shi B., Li Y., Wu H., Zhang R., Nunes S., and Jiang Z.: Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071 (2020).

    CAS  Google Scholar 

  188. Kakaras E., Koumanakos A., Doukelis A., Giannakopoulos D., and Vorrias I.: Oxyfuel boiler design in a lignite-fired power plant. Fuel 86, 2144 (2007).

    CAS  Google Scholar 

  189. Boot-Handford M.E., Abanades J.C., Anthony E.J., Blunt M.J., Brandani S., Dowell N.M., Fernández J.R., Fernández F., Ferrari M.-C., Gross R., Hallett J.P., Haszeldine R.S., Heptonstall P., Lyngfelt A., Makuch Z., Mangano E., Porter R.T.J., Pourkashanian M., Rochelle G.T., Shah N., Yap J.G., and Fennell P.S.:: Carbon capture and storage update. Energy Environ. Sci. 7, 130 (2014).

    CAS  Google Scholar 

  190. Wall T., Liu Y., Spero C., Elliott L., Khare S., Rathnam R., Zeenathal F., Moghtaderi B., Buhre B., Sheng C., Gupta R., Yamada T., Makino K., and Yu J.: An overview on oxyfuel coal combustion-state of the art research and technology development. Chem. Eng. Res. Des. 87, 1003 (2009).

    CAS  Google Scholar 

  191. Kather A. and Scheffknecht G.: The oxycoal process with cryogenic oxygen supply. Naturwissenschaften 96, 993 (2009).

    CAS  Google Scholar 

  192. Murray L.J., Dinca M., Yano J., Chavan S., Bordiga S., Brown C.M., and Long J.R.: Highly-selective and reversible O2 binding in Cr3 (1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc. 132, 7856 (2010).

    CAS  Google Scholar 

  193. Bloch E.D., Murray L.J., Queen W.L., Chavan S., Maximoff S.N., Bigi J.P., Krishna R., Peterson V.K., Grandjean F., Long G.J., Smit B., Bordiga S., Brown C.M., and Long J.R.: Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. J. Am. Chem. Soc. 133, 14814 (2011).

    CAS  Google Scholar 

  194. Lackner K.S.: The thermodynamics of direct air capture of carbon dioxide. Energy 50, 38 (2013).

    CAS  Google Scholar 

  195. Sanz-Pérezpérez E.S., Murdock C.R., Didas S.A., and Jones C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840 (2016).

    Google Scholar 

  196. Lanckner K.S., Grimes P., and Ziock H.J.: 24th Annual Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL (US), Carbon Dioxide Extraction from Air: Is It An Option? Report n. LA-UR-99-583 (1999).

    Google Scholar 

  197. Kumar A., Madden D.G., Lusi M., Chen K.-J., Daniels E.A., Curtin T., Perry J.J., and Zaworotko M.J.: Direct air capture of CO2 by physisorbent materials. Angew. Chem. Int. Ed. 54, 14372 (2015).

    CAS  Google Scholar 

  198. McDonald T.M., Ram Lee W., Mason J.A., Wiers B.M., Seop Hong C., and Long J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056 (2012).

    CAS  Google Scholar 

  199. Xue M., Liu Y., Schaffino R.M., Xiang S., Zhao X., Zhu G.S., Qiu S.L., and Chen B.: New prototype isoreticular metal-organic framework Zn4O(FMA)3 for gas storage. Inorg. Chem. 48, 4649 (2009).

    CAS  Google Scholar 

  200. Botas J.A., Calleja G., Sánchez-Sánchez M., and Orcajo M.G.: Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300 (2010).

    CAS  Google Scholar 

  201. Llewellyn P.L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Chang J., Hong D., Hwang Y.K., and Jhung S.H.: High uptakes of CO2 and CH4 in mesoporous metals organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245 (2008).

    CAS  Google Scholar 

  202. Furukawa H., Miller M.A., and Yaghi O.M.: Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17, 3197 (2007).

    CAS  Google Scholar 

  203. Gedrich K., Senkovska I., Klein N., Stoeck U., Henschel A., Lohe M.R., Baburin I.A., Mueller U., and Kaskel S.: A highly porous metal-organic framework with open nickel sites. Angew. Chem. Int. Ed. 49, 8489 (2010).

    CAS  Google Scholar 

  204. Prasad T.K. and Suh M.P.: Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Chem. Eur. J. 18, 8673 (2012).

    CAS  Google Scholar 

  205. Ruang D.A.N., Rsud A., and Johannes P.W.Z.: Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 3, 126 (2019).

    Google Scholar 

  206. Yuan D., Zhao D., Sun D., and Zhou H.C.: An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357 (2010).

    CAS  Google Scholar 

  207. Mu B., Schoenecker P.M., and Walton K.S.: Gas adsorption study on mesoporous metal-organic framework UMCM-1. J. Phys. Chem. C 114, 6464 (2010).

    CAS  Google Scholar 

  208. Tan C., Yang S., Champness N.R., Lin X., Blake A.J., Lewis W., and Schröder M.: High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. Chem. Commun. 47, 4487 (2011).

    CAS  Google Scholar 

  209. Duan J., Yang Z., Bai J., Zheng B., Li Y., and Li S.: Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: Experimental and theoretical studies. Chem. Commun. 48, 3058 (2012).

    CAS  Google Scholar 

  210. Alsmail N.H., Suyetin M., Yan Y., Cabot R., Krap C.P., Lü J., Easun T.L., Bichoutskaia E., Lewis W., Blake A.J., and Schröder M.: Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework. Chem. Eur. J. 20, 7317 (2014).

    CAS  Google Scholar 

  211. Park Y.K., Sang B.C., Kim H., Kim K., Won B.H., Choi K., Choi J.S., Ahn W.S., Won N., Kim S., Dong H.J., Choi S.H., Kim G.H., Cha S.S., Young H.J., Jin K.Y., and Kim J.: Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 46, 8230 (2007).

    CAS  Google Scholar 

  212. Moellmer J., Moeller A., Dreisbach F., Glaeser R., and Staudt R.: High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal-organic framework HKUST-1. Microporous Mesoporous Mater. 138, 140 (2011).

    CAS  Google Scholar 

  213. Liang Z., Marshall M., and Chaffee A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23, 2785 (2009).

    CAS  Google Scholar 

  214. Zheng B., Liu H., Wang Z., Yu X., Yi P., and Bai J.: Porous NbO-type metal-organic framework with inserted acylamide groups exhibiting highly selective CO2 capture. CrystEngComm 15, 3517 (2013).

    CAS  Google Scholar 

  215. Xiang Z., Hu Z., Cao D., Yang W., Lu J., Han B., and Wang W.: Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491 (2011).

    CAS  Google Scholar 

  216. Lu Z., Xing H., Sun R., Bai J., Zheng B., and Li Y.: State water stable metal–organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 12, 1081 (2012).

    CAS  Google Scholar 

  217. Sumida K., Rogow D.L., Mason J.A., Mcdonald T.M., Bloch E.D., Herm Z.R., Bae T., and Long R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724 (2012).

    CAS  Google Scholar 

  218. Zhao D., Yuan D., Sun D., and Zhou H.C.: Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J. Am. Chem. Soc. 131, 9186 (2009).

    CAS  Google Scholar 

  219. Hamon L., Jolimaître E., and Pirngruber G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49, 7497 (2010).

    CAS  Google Scholar 

  220. Lan J., Cao D., Wang W., and Smit B.: Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano. 4, 4225 (2010).

    CAS  Google Scholar 

  221. Férey C., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., and Margiolaki I.: Chemistry: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005).

    Google Scholar 

  222. Zhang Z., Huang S., Xian S., Xi H., and Li Z.: Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101. Energy Fuels 25, 835 (2011).

    CAS  Google Scholar 

  223. Llewellyn P.L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Chang J.-S., Hong D.-Y., Hwang Y.K., Jhung S.H., and Férey G.: High uptakes of CO2 and CH4 in mesoporous metalsorganic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008).

    CAS  Google Scholar 

  224. Li H., Eddaoudi M., O'Keeffe M., and Yaghi O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276 (1999).

    CAS  Google Scholar 

  225. Farha O.K., Yazaydin A.Ö., Eryazici I., Malliakas C.D., Hauser B.G., Kanatzidis M.G., Nguyen S.T., Snurr R.Q., and Hupp J.T.: De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944 (2010).

    CAS  Google Scholar 

  226. Xue D.X., Wang Q., and Bai J.: Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 378, 2 (2019).

    CAS  Google Scholar 

  227. Lee Y.G., Moon H.R., Cheon Y.E., and Suh M.P.: A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn 2(abtc)(dmf)2}3] and [{Cu2(abtc) (dmf)2}3] versus [{Cu2(abtc)}3]. Angew. Chem. Int. Ed. 47, 7741 (2008).

    CAS  Google Scholar 

  228. Yang S., Lin X., Lewis W., Suyetin M., Bichoutskaia E., Parker J.E., Tang C.C., Allan D.R., Rizkallah P.J., Hubberstey P., Champness N.R., Mark Thomas K., Blake A.J., and Schröder M.: A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710 (2012).

    CAS  Google Scholar 

  229. Galli S., Maspero A., Giacobbe C., Palmisano G., Nardo L., Comotti A., Bassanetti I., Sozzani P., and Masciocchi N.: When long bis(pyrazolates) meet late transition metals: Structure, stability and adsorption of metal-organic frameworks featuring large parallel channels. J. Mater. Chem. A 2, 12208 (2014).

    CAS  Google Scholar 

  230. Li B., Zhang Z., Li Y., Yao K., Zhu Y., Deng Z., Yang F., Zhou X., Li G., Wu H., Nijem N., Chabal Y.J., Lai Z., Han Y., Shi Z., Feng S., and Li J.: Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angew. Chem. Int. Ed. 51, 1412 (2012).

    CAS  Google Scholar 

  231. Xiang S., He Y., Zhang Z., Wu H., Zhou W., Krishna R., and Chen B.: Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 3, 954 (2012). doi: 10.1038/ncomms1956.

    Google Scholar 

  232. Wang X.J., Li P.Z., Chen Y., Zhang Q., Zhang H., Chan X.X., Ganguly R., Li Y., Jiang J., and Zhao Y.: A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Sci. Rep. 3, 1 (2013).

    Google Scholar 

  233. Hu Y., Xiang S., Zhang W., Zhang Z., Wang L., Bai J., and Chen B.: A new MOF-505 analog exhibiting high acetylene storage. Chem. Commun. 7551 (2009).

    Google Scholar 

  234. Zhao X., Bu X., Zhai Q.G., Tran H., and Feng P.: Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. J. Am. Chem. Soc. 137, 1396 (2015).

    CAS  Google Scholar 

  235. Song C., He Y., Li B., Ling Y., Wang H., Feng Y., Krishna R., and Chen B.: Enhanced CO2 sorption and selectivity by functionalization of a NbO-type metal-organic framework with polarized benzothiadiazole moieties. Chem. Commun. 50, 12105 (2014).

    CAS  Google Scholar 

  236. Qin J.S., Du D.Y., Li W.L., Zhang J.P., Li S.L., Su Z.M., Wang X.L., Xu Q., Shao K.Z., and Lan Y.Q.: N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114 (2012).

    CAS  Google Scholar 

  237. Si X., Jiao C., Li F., Zhang J., Wang S., Liu S., Li Z., Sun L., Xu F., Gabelica Z., and Schick C.: High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci. 4, 4522 (2011).

    CAS  Google Scholar 

  238. Liao P., Chen H., Zhou D., Liu S., and He C.: Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high- humidity flue gas. Energy Environ. Sci. 8, 1011 (2015).

    CAS  Google Scholar 

  239. Paper R.: Carbon dioxide capture on metal-organic frameworks with amide-decorated pores. Nanochem. Res. 3, 62 (2018).

    Google Scholar 

  240. Henke S., Schneemann A., Wütscher A., and Fischer R.A.: Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464 (2012).

    CAS  Google Scholar 

  241. Chen C., Zheng S., Wei Z., Cao C., Wang H., Wang D., Jiang J., Fenske D., and Su C.: A robust metal–organic framework combining open metal sites and polar groups for methane purification and CO2/fluorocarbon capture. Chem. Eur. J. 23, 4060 (2017).

    CAS  Google Scholar 

  242. Liao P.Q., Chen H., Zhou D.D., Liu S.Y., He C.T., Rui Z., Ji H., Zhang J.P., and Chen X.M.: Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8, 1011 (2015).

    CAS  Google Scholar 

  243. Mcdonald T.M., Lee W.R., Mason J.A., Wiers B.M., Hong C.S., and Long R.: Capture of carbon dioxide from air and flue gas in the alkylamine- appended metal–organic framework mmen-Mg2( dobpdc ). J. Am. Chem. Soc. 134, 7056 (2012).

    CAS  Google Scholar 

  244. Guo X., Zhu G., Li Z., Sun F., Yang Z., and Qiu S.: A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem. Commun. 1, 3172 (2006).

    Google Scholar 

  245. Jiang Z.R., Wang H., Hu Y., Lu J., and Jiang H.L.: Polar group and defect engineering in a metal-organic framework: Synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8, 878 (2015).

    CAS  Google Scholar 

  246. Forrest K.A., Pham T., and Space B.: Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series. CrystEngComm 19, 3338 (2017).

    CAS  Google Scholar 

  247. Links D.A., Huang Y., Qin W., Li Z., and Li Y.: Enhanced stability and CO2 affinity of a UiO-66 type metal–organic framework decorated with dimethyl groups. Dalton Trans. 41, 9283 (2012).

    Google Scholar 

  248. Panda T., Pachfule P., Chen Y., Jiang J., and Banerjee R.: Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem. Commun. 47, 2011 (2011).

    CAS  Google Scholar 

  249. Kim S.N., Kim J., Kim H.Y., Cho H.Y., and Ahn W.S.: Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal. Today 204, 85 (2013).

    CAS  Google Scholar 

  250. Li Y.W., Li J.R., Wang L.F., Zhou B.Y., Chen Q., and Bu X.H.: Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J. Mater. Chem. A 1, 495 (2013).

    CAS  Google Scholar 

  251. Lin J., Zhang J., and Chen X.: Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc. 132, 6654 (2010).

    CAS  Google Scholar 

  252. Song C., Hu J., Ling Y., Feng Y., Krishna R., Chen D.L., and He Y.: The accessibility of nitrogen sites makes a difference in selective CO2 adsorption of a family of isostructural metal-organic frameworks. J. Mater. Chem. A 3, 19417 (2015).

    CAS  Google Scholar 

  253. Online V.A.: Screening and evaluating aminated cationic functional moieties for potential CO2 capture applications using an anionic MOF scaffold. Chem. Commun. 49, 11385 (2013).

    Google Scholar 

  254. Nicola D., Chimiche S., Chemistry I.F.M., and Chimiche S.: Tuning carbon dioxide adsorption affinity of zinc(II) MOFs by mixing bis(pyrazolate) ligands with N-. ACS Appl. Mater. Interfaces 28, 15606 (2019).

    Google Scholar 

  255. Seop C.: Exceptional CO2 working capacity in a heterodiamine-grafted metal–organic framework. Chem. Sci. 6, 3697 (2015).

    Google Scholar 

  256. Foo M.L., Matsuda R., Hijikata Y., Krishna R., Sato H., Horike S., Hori A., Duan J., Sato Y., Kubota Y., Takata M., and Kitagawa S.: An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 138, 3022 (2016).

    CAS  Google Scholar 

  257. An J. and Rosi N.L.: Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc. 132, 5578 (2010).

    CAS  Google Scholar 

  258. Yao Q., Su J., Cheung O., Liu Q., Hedin N., and Zou X.: Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. J. Mater. Chem. 22, 10345 (2012).

    CAS  Google Scholar 

  259. Wei Z., Su C., Chen C., Cao C., Pan M., and Wang H.: Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chem. Commun. 53, 11403 (2017).

    Google Scholar 

  260. Mcdonald T.M., D'Alessandro D.M., Krishna R., and Long J.R.: Enhanced carbon dioxide capture upon incorporation of N,N’-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem. Sci. 2, 2022 (2011).

    CAS  Google Scholar 

  261. Yazaydin A.Ö., Benin A.I., Faheem S.A., Jakubczak P., Low J.J., Richard R.W., and Snurr R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425 (2009).

    CAS  Google Scholar 

  262. Lau C.H., Babarao R., and Hill M.R.: A route to drastic increase of CO2 uptake in Zr metal organic framework UiO. Chem. Commun. 49, 3634 (2013).

    Google Scholar 

  263. An J., Geib S.J., and Rosi N.L.: High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38 (2010).

    CAS  Google Scholar 

  264. Park H.J. and Suh M.P.: Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chem. Sci. 4, 685 (2013).

    CAS  Google Scholar 

  265. Hong D.H. and Paik M.: Enhancing CO2 separation ability of a metal–organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates. Chem. Eur. J. 20, 426 (2014).

    CAS  Google Scholar 

  266. Jiang Z., Wang H., Hu Y., Lu J., and Jiang H.: Polar group and defect engineering in a metal–organic framework: Synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 5, 878 (2015).

    Google Scholar 

  267. Shou-Tian Z., B T., Li J., Zuo Y., Pingyun Feng T.W.F., and Bu X.: Pore space partition and charge separation in cage-within-cage indium–organic frameworks with high CO2 uptake. J. Am. Chem. Soc. 132, 17062 (2010).

    Google Scholar 

  268. Chen C., Wei Z., Jiang J., Fan Y., Zheng S., Cao C., Li Y., Fenske D., and Su C.: Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem. Int. Ed. 55, 9932 (2016).

    CAS  Google Scholar 

  269. Hu Z., Faucher S., Zhuo Y., Sun Y., Wang S., and Zhao D.: Combination of optimization and metalated-ligand exchange: An effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem. Eur. J. 21, 17246 (2015).

    CAS  Google Scholar 

  270. Hou L., Shi W.J., Wang Y.Y., Guo Y., Jin C., and Shi Q.Z.: A rod packing microporous metal-organic framework: Unprecedented ukv topology, high sorption selectivity and affinity for CO2. Chem. Commun. 47, 5464 (2011).

    CAS  Google Scholar 

  271. Chen S., Zhang J., Wu T., Feng P., and Bu X.: Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J. Am. Chem. Soc. 131, 16027 (2009).

    CAS  Google Scholar 

  272. Cmarik G.E., Kim M., Cohen S.M., and Walton K.S.: Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28, 15606 (2012).

    CAS  Google Scholar 

  273. Dhakshinamoorthy A., Santiago-Portillo A., Asiri A.M., and Garcia H.: Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 11, 899 (2019).

    CAS  Google Scholar 

  274. Cavka J.H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., and Lillerud K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850 (2008).

    Google Scholar 

  275. Samanta A., Furuta T., and Li J.: Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J. Chem. Phys. 125, (084714 (2006).

    Google Scholar 

  276. Tan Y.X., He Y.P., and Zhang J.: Pore partition effect on gas sorption properties of an anionic metal-organic framework with exposed Cu coordination sites. Chem. Commun. 47, 10647 (2011).

    CAS  Google Scholar 

  277. Kaye S.S., Dailly A., Yaghi O.M., and Long J.R.: Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176 (2007).

    CAS  Google Scholar 

  278. Low J.J., Benin A.I., Jakubczak P., Abrahamian J.F., Faheem S.A., and Willis R.R.: Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834 (2009).

    CAS  Google Scholar 

  279. Pettinari C., Tabacaru A., Boldog I., Domasevitch K.V., Galli S., and Masciocchi N.: Novel coordination frameworks incorporating the 4,4′-bipyrazolyl.pdf. Inorg. Chem. 51, 5235 (2012).

    CAS  Google Scholar 

  280. Mosca N., Vismara R., Fernandes J.A., Casassa S., Domasevitch K.V., Bailón-García E., Maldonado-Hódar F.J., Pettinari C., and Galli S.: CH3-tagged bis(pyrazolato)-based coordination polymers. Cryst. Growth Des. 17, 3854 (2017).

    CAS  Google Scholar 

  281. Vismara R., Tuci G., Mosca N., Domasevitch K.V., Di Nicola C., Pettinari C., Giambastiani G., Galli S., and Rossin A.: Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).

    CAS  Google Scholar 

  282. Lin R.B., Chen D., Lin Y.Y., Zhang J.P., and Chen X.M.: A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. Inorg. Chem. 51, 9950 (2012).

    CAS  Google Scholar 

  283. Dan-Hardi M., Serre C., Frot T., Rozes L., Maurin G., Sanchez C., and Férey G.: A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857 (2009).

    CAS  Google Scholar 

  284. Ding M., Flaig R.W., and Jiang H.: Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783 (2019).

    CAS  Google Scholar 

  285. Nugent P., Giannopoulou E.G., Burd S.D., Elemento O., Giannopoulou E.G., Forrest K., Pham T., Ma S., Space B., Wojtas L., Eddaoudi M., and Zaworotko M.J.: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80 (2013).

    CAS  Google Scholar 

  286. Chen B., Ma S., Hurtado E.J., Lobkovsky E.B., and Zhou H.C.: A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 8490 (2007).

    CAS  Google Scholar 

  287. Lin Y., Yan Q., Kong C., and Chen L.: Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1 (2013).

    CAS  Google Scholar 

  288. Ding N., Li H., Feng X., Wang Q., Wang S., Ma L., Zhou J., and Wang B.: Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. J. Am. Chem. Soc. 138, 10100 (2016).

    CAS  Google Scholar 

  289. Vicent-Luna J.M., Gutiérrez-Sevillano J.J., Hamad S., Anta J., and Calero S.: Role of ionic liquid [EMIM] [SCN] in the adsorption and diffusion of gases in metal−organic frameworks. ACS Appl. Mater. Interfaces 10, 29694 (2018).

    CAS  Google Scholar 

  290. Kumar R., Raut D., Ramamurty U., and Rao C.N.R.: Remarkable improvement in the mechanical properties and CO2 uptake of mofs brought about by covalent linking to graphene. Angew. Chem. Int. Ed. 55, 7857 (2016).

    CAS  Google Scholar 

  291. Chakraborty A. and Maji T.K.: Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties. APL Mater. 2, 124107 (2014).

    Google Scholar 

  292. Chen C., Li B., Zhou L., Xia Z., Feng N., Ding J., Wang L., Wan H., and Guan G.: Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption. ACS Appl. Mater. Interfaces 9, 23060 (2017).

    CAS  Google Scholar 

  293. Liu S., Sun L., Xu F., Zhang J., Jiao C., Li F., Li Z., Wang S., Wang Z., Jiang X., Zhou H., Yang L., and Schick C.: Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 6, 818 (2013).

    CAS  Google Scholar 

  294. Policicchio A., Zhao Y., Zhong Q., Agostino R.G., and Bandosz T.J.: Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media. ACS Appl. Mater. Interfaces 6, 101 (2014).

    CAS  Google Scholar 

  295. Yang Y., Ge L., Rudolph V., and Zhu Z.: In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 43, 7028 (2014).

    CAS  Google Scholar 

  296. Yehia H., Pisklak T.J., Ferraris J.P., Balkus K.J., and Musselman I.H.: Methane facilitated transport using copper(II) biphenyl dicarboxylatetriethylenediamine/poly(3-acetoxyethylthiophene) mixed matrix membranes. Polym. Prepr. 45, 35 (2004).

    CAS  Google Scholar 

  297. Zornoza B., Seoane B., Zamaro J.M., Téllez C., and Coronas J.: Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 12, 2781 (2011).

    CAS  Google Scholar 

  298. Seoane B., Zamaro J.M., Téllez C., and Coronas J.: Insight into the crystal synthesis, activation and application of ZIF-20. RSC Adv. 1, 917 (2011).

    CAS  Google Scholar 

  299. Díaz K., López-González M., Del Castillo L.F., and Riande E.: Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene ether-ether-sulfone) hybrid membranes. J. Membr. Sci. 383, 206 (2011).

    Google Scholar 

  300. Adams R., Carson C., Ward J., Tannenbaum R., and Koros W.: Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 131, 13 (2010).

    CAS  Google Scholar 

  301. Yang T., Xiao Y., and Chung T.S.: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 4, 4171 (2011).

    CAS  Google Scholar 

  302. Liu X.L., Li Y.S., Zhu G.Q., Ban Y.J., Xu L.Y., and Yang W.S.: An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angew. Chem. Int. Ed. 50, 10636 (2011).

    CAS  Google Scholar 

  303. Zhang C., Dai Y., Johnson J.R., Karvan O., and Koros W.J.: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34 (2012).

    CAS  Google Scholar 

  304. Chen X.Y., Hoang V.T., Rodrigue D., and Kaliaguine S.: Optimization of continuous phase in amino-functionalized metal-organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Adv. 3, 24266 (2013).

    CAS  Google Scholar 

  305. Shahid S. and Nijmeijer K.: Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures. J. Membr. Sci. 470, 166 (2014).

    CAS  Google Scholar 

  306. Abedini R., Omidkhah M., and Dorosti F.: Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL 53 mixed matrix membrane based on reverse selectivity. Int. J. Hydrogen Energy 39, 7897 (2014).

    CAS  Google Scholar 

  307. Bushell A.F., Attfield M.P., Mason C.R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Carolus Jansen J., Lanč M., Friess K., Shantarovich V., Gustov V., and Isaeva V.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48 (2013).

    CAS  Google Scholar 

  308. Bae T.H. and Long J.R.: CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 6, 3565 (2013).

    CAS  Google Scholar 

  309. Merkel T.C., Lin H., Wei X., and Baker R.: Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 359, 126 (2010).

    CAS  Google Scholar 

  310. Hu J., Cai H., Ren H., Wei Y., Xu Z., Liu H., and Hu Y.: Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 49, 12605 (2010).

    CAS  Google Scholar 

  311. Li L., Yao J., Wang X., Cheng Y.B., and Wang H.: ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance. J. Appl. Polym. Sci. 131 ( (2014).

  312. Basu S., Khan A.L., Cano-Odena A., Liu C., and Vankelecom I.F.J.: Membrane-based technologies for biogas separations. Chem. Soc. Rev. 39, 750 (2010).

    CAS  Google Scholar 

  313. Yang T. and Chung T.S.: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 38, 229 (2013).

    CAS  Google Scholar 

  314. Nuhnen A., Klopotowski M., Tanh Jeazet H.B., Sorribas S., Zornoza B., Téllez C., Coronas J., and Janiak C.: High performance MIL-101(Cr)@6FDA-: MPD and MOF-199@6FDA- m PD mixed-matrix membranes for CO2/CH4 separation. Dalton Trans. 49, 1822 (2020).

    CAS  Google Scholar 

  315. Li T., Pan Y., Peinemann K.V., and Lai Z.: Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 425–426, 235 (2013).

    Google Scholar 

  316. Rezaei F., Lawson S., Hosseini H., Thakkar H., Hajari A., Monjezi S., and Rownaghi A.A.: MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chem. Eng. J. 313, 1346 (2017).

    CAS  Google Scholar 

  317. Kreno L.E., Hupp J.T., and Van Duyne R.P.: Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82, 8042 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pettinari.

Abbreviations

abtc

1,1′-azobenzene-3,3′,5,5′-tetracarboxylate

Ad

adeninate

AmGND

aminoguanidinium

AT

5-aminotetrazolate

Atz

3-amino-1,2,4-triazolate

Azpy

4,4′-azobipyridine

Bbta

benzo(1,2-d:4,5-d′)bistriazolate

BDC

1,4-benzenedicarboxylate

BDP

1,4-benzenedipyrazolate

BDPO

N,N′-bis(3,5-dicarboxyphenyl)oxalamide

BDPR

1,4-benzenediphosphonate bis(monoalkyl ester)

BET

Brunauer–Emmett–Teller

bim

benzimidazolate

BIPA

bis(4-(1H-imidazol-1-yl) phenyl) amine

Bmic

1H-benzimidazol-5-carboxylate

bpdc

biphenyl-4,4′-dicarboxylate

4,4′-Bpe

trans-bis(4-pyridyl)ethylene)

bpe

1,2-bis(4-pyridyl)ethane

BPEB

1,4-bis(1H-pyrazol-4-yl-ethynyl)benzene

BPTC

biphenyltetracarboxylate

bpy

4,4′-bipyridine

BPZ

4,4′-bispyrazolate

BPZNO2

3-nitro-4,4′-bipyrazolate

BPZNH2

3-amino-4,4′-bipyrazolate

BTA

benzotriazolate

BTB

1,3,5-benzenetribenzoate

BTC

1,3,5-benzenetricarboxylate

BTTri

1,3,5-benzenetristriazolate

CCS

carbon capture and storage

cnc

4-carboxycinnamate

CNTs

carbon nanotubes

CPF

crystalline porous frameworks

DAC

direct air capture

dabco

1,4-diazabicyclooctane

DBU

1,8-diazabicyclo-[5.4.0]underc-7-ene

DFT

density-functional theory

dht

dihydroxyterephthalate

DiAmGND

diaminoguanidinium

DMA

N,N-dimethylacetamide

dmen

N,N-dimethylethylenediamine

DMF

N,N-dimethylformamide

dobdc

1,4-dioxido-2,5-benzenedicarboxylate

dobpdc

dioxidobiphenyl-3,3′-dicarboxylate

dpp

1,3-di(4-pyridyl)propane

dpt

3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolate

en

ethylenediamine

FMA

fumarate

GCMC

Grand Canonical Monte Carlo

GND

guanidinium

GO

graphene oxide

H4dhtp

2,5-dihydroxyterephthalic acid

IAST

ideal adsorbent solution theory

Im

imidazolate

IN

isonicotinate

IPA

isophthalate

L1

10-(4-carboxyphenyl)-10H-phenoxazine-3,6-dicarboxylic

L2

N1-(4-(1H-iml)benzyl)-N1-(2-aminoethyl)-ethane-1,2-diamine

L4

5-(3,5-dicarboxybenzamido)isophthalic acid

L5

2-(2-methoxyethoxy)benzene dicarboxylic

L6

2,5-bis(3-methoxypropoxy)benzene dicarboxylate

LBS

Lewis basic site

Me4BPZ

3,3′,5,5′-tetramethyl-4,4′bipyrazolate

Mmen

N,N′-dimethylenediamine

MMM

mixed matrix membranes

MOF

metal–organic framework

NDC

napthalenedicarboxylate

NH2BDC

2-aminoterephthalate

OCs

organic carbonates

OMS

open metal site

ox

oxalate

PAN

polyacrilonitrile

PBU

primary building unit

PEI

polyethylenimine

PFS

polar functional site

Phen

1,10-phenanthroline

PN

polynaphthalene

PSA

pressure swing adsorption

PSE

post-synthetic exchange

PSM

post-synthetic modification

pz

pyrazolate

QDs

quantum dots

Qst

isostatic adsorption heat

SBA

mesoporous silica

Sbpdc

4,4′-dibenzoic acid-2,2′-sulfone

SBU

secondary building unit

TATB

triazine-1,3,5-tribenzoate

TBA

tetrabutylammonium

TCM

tetrakis[4-(carboxyphenyl)-oxamethyl]methane

TCMBT

benzenetricarboxamide

TCPP

[meso-tetra(4-carboxyphenyl)porphyrin]

tdc

2,5-thiophenedicarboxylate

TDCPTM

4,4′,4″,4′′′-tetrakis[(3,5-di-carboxylic)-1-phenyl]-tetraphenylmeyhane

TDPAT

2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine

TEA

tetraethylammonium

TEPA

tetraethylenepentamine

TFA

trifluoroacetic acid

TMA

tetramethylammonium

TPA

tetrapropylammonium

TPBTM

N,N′,N″-tri(isophthalyl)-1,3,5,- (benzenetricarboxamide)

Tpt

2,4,6-tri(4-pyridyl)-1,3,5-triazine

TSA

temperature swing adsorption

Ttz

tetrazolate

tz

triazolate

tzc

tetrazolate-5-carboxylate

VSA

vacuum swing adsorption

Be-BTB

Be12(OH)12(BTB)4

Bio-MOF-1

Zn8(ad)4(BPDC)6O⋅2Me2NH2

Bio-MOF-11

(Co2(ad)2(CO2-CH3)2.2DMF0.5H2O)

CAU-1

Al4(OH)2(OCH3)4(BDC-NH2)3

CD-MOF-2

[(C48H80O40(RbOH)2]

Co21-MOF-5

Zn3.16Co0.84O(BDC)3

Co-BDP

Co(BDP)

Co-MOF-74

Co2(DOBDC)

CPF-6

[Zn2(Httb)2]

CPM-33a

Ni3OH(bdc)3tpt

CPM-33b

Ni3OH(dhbdc)3tpt

CPM-5

[(CH3)2NH2][In3O(BTC)2(H2O)3]2-[In3(BTC)4]⋅7DMF⋅23H2O

CPO-27-Mg

Mg2(dobdc)

CPO-27-Ni

Ni2(dobdc)

CPO-27-Zn

Zn2(dobdc)

Cu-BTB

[Cu24(BTB)8(H2O)24]

Cu-BTTri

H3[(Cu4Cl)3(BTTri)8]

Cu-EBTC

Cu2(EBTC)(H2O)2

Cu-TATB

[Cu24(TATB)8(H2O)24]

Cu-TCMBT

[Cu2(TCMBT)(bpp)(μ3-OH)]⋅6H2O

Cu-TDPAT

[Cu3(TDPAT)(H2O)3]⋅10H2O5DMA

Cu-TPBTM

[Cu24(TPBTM)8(H2O)24]

DUT-9

(Ni5O2(BTB)2)

Dy(BTC)

Dy(BTC)(H2O)⋅DMF

FJI-H14

[Cu(BTTA)H2O]n⋅6nH2O

Fe-MIL-88B

Fe3O(solvent)3Cl(BDC)3(solvent)m

HKUST-1

[Cu3(BTC)2]

HNUST-1

[Cu2(BDPT4)(H2O)2]

HNUST-3

[Cu2BDPO(H2O)4]

IFMC-1

[Zn(HL)]DMA (HL = H3L = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole)

IRMOF-74-III

Mg2(DH3PhDC)

IRMOF-74-III-CH2NH2

Mg2(DH3PhDC)-CH2NH2

JUC-1000

[Cu24(BDPO)12(H2O)12]⋅30DMF⋅14H2O

LIFM-33

[(Zr63-O)8-(H2O)8(L)4]⋅(solvents) (L = 2,2′-diamino-1,1′-biphenyl-4,4′-dicarboxylate)

LIFM-92

Zr6O4(OH)6(H2O)2(L8)4L (L8 = 2,2′-dimethylbiphenyl-4,4′-dicarboxylate)(L = 2′,5′-bis(azidomethyl)-[1,1′:4′,1″- terphenyl]-4,4″-dicarboxylate

MAF-25

[Co(dpt24)2]

MAF-26

[Co(mdpt24)2]

MAF-66

[Zn(atz)2]

MAF-X25

[Mn2Cl2(bbta)]

MAF-X25ox

[Mn2Cl2(bbta)(OH)]

MAF-X27

[Co2Cl2(bbta)]

MAF-X27ox

[Co2Cl2(bbta)(OH)]

MFM-136

[Cu4L(H2O)3] (L = 5-[4-(pyrimidin-5-yl)benzamido]isophthalate)

MFM-188

[Cu4L(H2O)4]⋅12H2O (L = [1,1′-biphenyl]-3,3′,5,5′-tetracarboxylate)

MIL-100

Cr3O(H2O)3F(BTC)2

MIL-101

Cr3O(H2O)2F(BDC)3

MIL-125

Ti8O8(OH)4(BDC)6

MIL-47

VO(O2C-C6H4-CO2)

MIL-53

Al(OH)(BDC)

MIL-88

[M3O(H2O)2X(L)3]⋅ (M = Fe, Cr; X =F, Cl, acetate; L = fdc, bdc, ndc, bpdc)

MIL-96

Al12O(OH)18(H2O)3(Al2(OH)4)(BTC)6

mmen-CuBTTri

H3[(Cu4Cl)3(BTTri)8(mmen)12]

MOF-177

Zn4O(BTB)2

MOF-200

Zn4O(BBC)2(H2O)3

MOF-205

Zn4O(BTB)4/3(NDC)

MOF-210

Zn4O(BTE)4/3(BPDC)

MOF-5, IRMOF-1

Zn4O(BDC)3

MOF-505

Cu2(EBTC)(H2O)2

MOF-525

Zr6O4(OH)8(TCPP)2

MTV-MOF-5-EHI

Zn4O(NO2-BDC)1.19((C3H5O)2-BDC)1.07-[(C7H7O)3 BDC]0.74

NH2-MIL-101

Cr3F(H2O)2O(NH2-BDC)3

NH2-MIL-125

[Ti8O8(OH)4(NH2-BDC)6]

NH2-MIL-88B(Fe)

Fe3O(solvent)3Cl(NH2-BDC)3(solvent)m

NJU-Bai3

[Cu3L2(H2O)5] (L =5-(4-carboxy-benzoylamino)-isophthalate)

NJU-Bai49

[Sc3(μ3-O)(L)1.5(H2O)3Cl]n (L = 5-(3,5-dicarboxybenzamido)isophthalate)

NNU-28

[Zr6O4(OH)4(L)6]⋅6DMF (L = 4,40-(anthracene-9,10-diylbis(ethyne-2,1-diyl))dibenzoate)

NOTT-125

[Cu2(H2O)2BDPO]

NOTT-140

Cu4(TDCPTM)

NOTT-202a

[Me2NH2]1.75[In(L)]1.75 (L =(biphenyl-3,3′,5,5′-tetra-(phenyl-4-carboxylate))

NTU-105

Cu3(L)(H2O)3⋅11DMF⋅8H2O (L = 5,5′,5″-(4,4′,4″-(benzene-1,3,5-triyl) tris(1H-1,2,3-triazole-4,1diyl))triisophthalate)

NU-100

Cu3(TCEPEB)

PCN-123

[Zn4O(L)3] (L = 2-(phenyldiazenyl)terephthalate)

PCN-124-stu

[Cu2(PDAD)(H2O)]n

PCN-222

Zr63-OH)8(OH)8-(TCPP)2

PCN-61

[Cu(H2O)]3(btei)

PCN-66

[Cu(H2O)]3(ntei)

PCN-68

[Cu3(H2O)]3(ptei)

PCN-88

[Cu(L)1/2]n (L = 5,50-(naphthalene-2,7-diyl)diisophthalate)

PCN-900

[(CH3)2NH2]2[Eu63-OH)8(TCPP)1.5(DCDPS)3]⋅(solvent)x

SIFSIX-1-Cu

Cu(4,4’-bpy)2(SiF6)

SIFSIX-2-Cu-i

Cu(dpa)2(SiF6)

SIFSIX-3-Zn

[Zn(pyr)2(SiF6)]n

SNU-100

[Zn3(TCPT)2(HCOO)] [NH2(CH3)2]

SNU-100-Ca

[Zn3(TCPT)2(HCOO)][Ca(H2O)n]0.427[NH2(CH3)2]0.146

SNU-100-Co

[[Zn3(TCPT)2(HCOO)][Co(H2O)n]0.477[NH2(CH3)2]0.046

SNU-100-Li

[Zn3(TCPT)2(HCOO)][Li(H2O)n]0.844[NH2(CH3)2]0.156

SNU-100-Mg

[Zn3(TCPT)2(HCOO)][Mg(H2O)n]0.442[NH2(CH3)2]0.116

SNU-100-Ni

[Zn3(TCPT)2(HCOO)][Ni(H2O)n]0.445[NH2(CH3)2]0.110

SNU-21H

[Cu2(TCM)]n

SNU-21S

[Cu2(TCM)]n

SNU-4

[Zn2(abtc)]3

SNU-5

[Cu2(abtc)]3

SNU-70

Zn4O-(CVB)3

SNU-71

Zn4O-(CEB)3

SUMOF-2

Zn4O(BDC)3]⋅(ZnO)0.125

SUMOF-3

Zn4O(NDC)3

SUMOF-4

Zn4O(BDC)2(BPDC)(H2O)

TBA@bio-MOF-1

Zn8(ad)4(BPDC)6O⋅2TBA

TEA@bio-MOF-1

Zn8(ad)4(BPDC)6O⋅2TEA

TMA@bio-MOF-1

Zn8(ad)4(BPDC)6O⋅2TMA

TMOF-1

[Cu(bpy)2(EDS)]n

UiO-66

Zr6O4(OH)4(BDC)6

UiO-66-(CH3)2

Zr6O4(OH)4((CH3)2-BDC)6

UiO-66-NH2

Zr6O4(OH)4(NH2-BDC)6

UMCM-1

Zn4O(BDC)(BTB)4/3

USTC-253

[Al(OH)(Sbpdc)]

USTC-253-TFA

[Al(OH)(Sbpdc)(TFA)x]

UTSA-16

[K(H2O)2Co3(cit)(Hcit)]

ZIF-7

Zn(bIm)2

ZIF-8

Zn(MeIm)2

ZIF-9

Co(PhIm)2

ZIF 70

Zn(Im)-(nIm)

ZIF-67

Co(MeIm)2

ZIF-95

Zn(cbIm)2

ZJNU-40

[Cu2L(H2O)2] (L = 5,50-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalate)

ZJNU-41

[Cu2L(H2O)2] (L = 5,5′-(benzo[c][1,2,5]furanzan-4,7-diyl)diisophthalate)

ZJNU-43

[Cu2L(H2O)2]⋅3DMF⋅2EtOH⋅4H2O (L = 5,50-(quinoline-5,8-diyl)-diisophthalate)

ZJNU-44

[Cu2L(H2O)2]⋅3DMF⋅3CH3CN⋅3H2O (L = 5,50-(isoquinoline 5,8diyl)diisophthalate)

ZJNU-45

[Cu2L(H2O)2]⋅3DMF⋅3MeOH⋅3H2O (L = 5,50-(quinoxaline-5,8-diyl)diisophthalate)

Zn-H/NH2

Zn(BPZ)x(BPZNH2)1−x

ZTF-1

[Zn(CN5H2)2]DMF

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettinari, C., Tombesi, A. Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability 7, 35 (2020). https://doi.org/10.1557/mre.2020.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.30

Keywords

Navigation