Skip to main content
Log in

Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report on the structural evolution of diamond-like carbon (DLC) films by the nanosecond pulsed laser annealing process. DLC film is coated on cemented carbide (WC-Co) by cathodic arc ion plating, which is then annealed by ArF laser (193 nm, 20 ns) at different laser fluences (0.9–1.7 J/cm2). Upon laser annealing, Raman spectra divulge higher sp3 fractions accompanied by a blue shift in the G-peak position, which indicates the changes of sp2 sites from rings to chains. At higher fluence (>1.2 J/cm2), the film converts into reduced graphene oxide confirmed by its Raman-active vibrational modes: D, G, and 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H.O. Pierson: Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (William Andrew, Noyes Publications, Park Ridge, New Jersy, USA, 2012).

    Google Scholar 

  2. J. Robertson: Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 21, 199 (1991).

    Article  CAS  Google Scholar 

  3. A. Zkria, F. Abdel-Wahab, Y. Katamune, and T. Yoshitake: Optical and structural characterization of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited via coaxial arc plasma. Curr. Appl. Phys 19, 143–148 (2019).

    Article  Google Scholar 

  4. S.R.P. Silva, J. Robertson, W.I. Milne, and G.A.J. Amaratunga: Amorphous Carbon: State of the Art (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  5. C. Casiraghi, J. Robertson, and A.C. Ferrari: Diamond-like carbon for data and beer storage. Mater. Today 10, 42 (2007).

    Article  Google Scholar 

  6. R. Hauert: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991 (2004).

    Article  CAS  Google Scholar 

  7. M. Milewski, M. Madej, M. Niemczewska-Wójcik, and D. Ozimina: Evaluation of the properties of diamond-like carbon coatings lubricated with ionic liquids. Tribologia 5, 37–45 (2017).

    Article  Google Scholar 

  8. J. Kowalczyk, M. Milewski, M. Madej, and D. Ozimina: Properties of a tribological system with a diamond-like carbon coating lubricated with environmentally friendly cutting fluid. Tribologia 5, 19–26 (2018).

    Article  Google Scholar 

  9. M. Dai, K. Zhou, Z. Yuan, Q. Ding, and Z. Fu: The cutting performance of diamond and DLC-coated cutting tools. Diam. Relat. Mater 9, 1753–1757 (2000).

    Article  CAS  Google Scholar 

  10. A. Saai, I.H. Svenum, P.A. Kane, J. Friis, and T. Berstad: Multi-scale modeling of WC-Co drill bits material with density functional theory and crystal elasticity model. Proc. Mater. Sci. 3, 640 (2014).

    Article  CAS  Google Scholar 

  11. H. Naragino, M. Egiza, A. Tominaga, K. Murasawa, H. Gonda, M. Sakurai, and T. Yoshitake: Hard coating of ultrananocrystalline diamond/nonhydrogenated amorphous carbon composite films on cemented tungsten carbide by coaxial arc plasma deposition. Appl. Phys. A 122(8) (2016).

    Google Scholar 

  12. Z.L. Akkerma, H. Efstathiadis, and F.W. Smith: Thermal stability of diamond like carbon films. J. Appl. Phys. 80, 3068 (1996).

    Article  Google Scholar 

  13. E. Manikandan, G. Kavitha, and J. Kennedy: Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40(10), 16065 (2014).

    Article  CAS  Google Scholar 

  14. E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, and U.K. Mudali: Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J. Alloys Compd. 647, 141 (2015).

    Article  CAS  Google Scholar 

  15. S.G. Ryu, I. Gruber, C.P. Grigoropoulos, D. Poulikakos, and S.J. Moon: Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses. Thin Solid Films 520(22), 6724 (2012).

    Article  CAS  Google Scholar 

  16. R. Trusovas, G. Raciukaitis, G. Niaura, J. Barkauskas, G. Valušis, and R. Pauliukaite: Recent advances in laser utilization in the chemical modification of graphene oxide and its applications. Adv. Opt. Mater. 4(1), 37–65 (2016).

    Article  CAS  Google Scholar 

  17. E. Abubakr, A. Zkria, Y. Katamune, S. Ohmagari, K. Imokawa, H. Ikenoue, and T. Yoshitake: Formation of low resistivity layers on singlecrystalline diamond immersed in boric acid by excimer laser irradiation. Diam. Relat. Mater. 95, 166 (2019).

    Article  CAS  Google Scholar 

  18. J. Narayan, V. Godbole, and C. White: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252, 416 (1991).

    Article  CAS  Google Scholar 

  19. J. Narayan, A. Bhaumik, R. Sachan, A. Haque, S. Gupta, and P. Pant: Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds. Nanoscale 115, 2238–2248 (2019).

    Article  Google Scholar 

  20. A. Queraltó, A. Pérez del Pino, M. de la Mata, J. Arbiol, M. Tristany, X. Obradors, and T. Puig: Ultrafast epitaxial growth kinetics in functional oxide thin films grown by pulsed laser annealing of chemical solutions. Chem. Mater. 28(17), 6136 (2016).

    Article  CAS  Google Scholar 

  21. F. Stock, F. Antoni, L. Diebold, C.C. Gowda, S. Hajjar-Garreau, D. Aubel, and D. Muller: UV laser annealing of diamond-like carbon layers obtained by pulsed laser deposition for optical and photovoltaic applications. Appl. Surface Sci. 464, 562–566 (2019).

    Article  CAS  Google Scholar 

  22. K. Lee and H. Ki: Rapid fabrication of transparent conductive films with controllable sheet resistance on glass substrates by laser annealing of diamond-like carbon films. Acta Mater. 111, 315–320 (2016).

    Article  CAS  Google Scholar 

  23. J. Narayan, A. Bhaumik, S. Gupta, A. Haque, and R. Sachan: Progress in Q-carbon and related materials with extraordinary properties. Mater. Res. Lett 6(7), 353–364 (2018).

    Article  CAS  Google Scholar 

  24. A. Haque and J. Narayan: Stability of electron field emission in Q-carbon. MRS Commun 8(3), 1343–1351 (2018).

    Article  CAS  Google Scholar 

  25. A. Bhaumik, R. Sachan, S. Gupta, and J. Narayan: Discovery of high-temperature superconductivity (Tc=55 K) in B-doped Q-carbon. ACS Nano 11(12), 11915–11922 (2017).

    Article  CAS  Google Scholar 

  26. S. Gupta, R. Sachan, A. Bhaumik, P. Pant, and J. Narayan: Undercooling driven growth of Q-carbon, diamond, and graphite. MRS Commun 8, 533–540 (2018).

    Article  CAS  Google Scholar 

  27. Y. Lifshitz: Hydrogen-free amorphous carbon films: correlation between growth conditions and properties. Diam. Relat. Mater 5, 388–400 (1996).

    Article  CAS  Google Scholar 

  28. A. Zkria, H. Gima, M. Shaban, and T. Yoshitake: Electrical characteristics of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition. Appl. Phys. Express 8, 095101–1–095101–3 (2015).

    Article  CAS  Google Scholar 

  29. A.C. Ferrari and J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  30. S.R. Salis, D.J. Gardiner, M. Bowden, J. Savage, and D. Rodway: Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm. Diam. Relat. Mater. 5, 589 (1996).

    Article  Google Scholar 

  31. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  CAS  Google Scholar 

  32. S. Prawer, K.W. Nugent, Y. Lifshitz, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish: Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diam. Relat. Mater. 5, 433 (1996).

    Article  CAS  Google Scholar 

  33. A.C. Ferrari: Determination of bonding in diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater 11, 1053–1061 (2002).

    Article  CAS  Google Scholar 

  34. S. Anders, J.W. Ager III, G.M. Pharr, T.Y. Tsui, and I.G. Brown: Heat treatment of cathodic arc deposited amorphous hard carbon films. Thin Solid Films 308, 186–190 (1997).

    Article  Google Scholar 

  35. J. Narayan and A. Bhaumik: Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett 4, 118–126 (2016).

    Article  CAS  Google Scholar 

  36. D. Lin-Vien, N.B. Colthurp, W.G. Fateley, and J.G. Grasselli: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, New York, 1991).

    Google Scholar 

  37. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, and J. Robertson: Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett 93(18), 185503–1–185503–4 (2004).

    Article  CAS  Google Scholar 

  38. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, and A.K. Geim: Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  39. A. Haque, M. Abdullah-Al Mamun, M.F.N. Taufique, P. Karnati, and K. Ghosh: Temperature dependent electrical transport properties of high carrier mobility reduced graphene oxide thin film devices. IEEE Trans. Semicond. Manuf 31(4), 535–544 (2018).

    Article  Google Scholar 

  40. H. Xu, Z. Zhang, R. Shi, H. Liu, Z. Wang, S. Wang, and L.-M. Peng: Batch-fabricated high-performance graphene Hall elements. Sci. Rep 3, 1207–1–1207–8 (2013).

    Article  CAS  Google Scholar 

  41. A. Bhaumik, A. Haque, M.F.N. Taufique, P. Karnati, R. Patel, M. Nath, and K. Ghosh: Reduced graphene oxide thin films with very large charge carrier mobility using pulsed laser deposition. J. Mater. Sci. Eng 6(4), 364–1–364–11 (2017).

    Google Scholar 

  42. M.A. Tamor and W.C. Vassell: Raman ‘fingerprinting’ of amorphous carbon films. J. Appl. Phys 76(6), 3823–3830 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant No. JP15H04127) and Grant-in-Aid for JSPS Fellows (Grant No. JP17F17380). A. Zkria acknowledges Japan Society for Promotion of Science (JSPS), Japan for awarding the JSPS fel-lowship and supporting visit at North Carolina State University as a visiting scientist. For sample characterizations, we used the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman Zkria.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zkria, A., Haque, A., Egiza, M. et al. Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide. MRS Communications 9, 910–915 (2019). https://doi.org/10.1557/mrc.2019.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.88

Navigation