Skip to main content
Log in

Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Here, we report thiol-free thermal-injection synthesis of chalcopyrite (CuFeS2) nanocrystals (NCs) using iron (II) bromide (FeBr2), copper (II) acetaylacetonate (Cu(acac)2), and elemental sulfur (S). Controlled reaction temperature and growth time yield stable and phase-pure ternary CuFeS2 NCs exhibiting tetragonal crystal structure. With increasing growth time from 1 to 30 min, absorption peak slightly red shifts from 465 to 490 nm. Based on spectroscopic ellipsometry analysis, three electronic transitions at 0.652, 1.54, and 2.29 eV were found for CuFeS2 NC film. Also, CuFeS2 NC thin films are incorporated as hole transport layers in cadmium telluride solar cells reaching an efficiency of ~12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Table I
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. T. Kambara: Optical Properties of a magnetic semiconductor: chalcopyrite CuFeS2 II. Calculated electronic structures of CuGaS2:Fe and CuFeS2. J. Phys. Soc. Jpn. 36, 1625 (1974).

    Article  CAS  Google Scholar 

  2. S. Conejeros, P. Alemany, M. Llunell, I.D.P.R. Moreira, V.C. Sánchez, and J. Llanos: Electronic structure and magnetic properties of CuFeS2. Inorg. Chem. 54, 4840 (2015).

    Article  CAS  Google Scholar 

  3. D. Liang, R. Ma, S. Jiao, G. Pang, and S. Feng: A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4, 6265 (2012).

    Article  CAS  Google Scholar 

  4. J. Li, Q. Tan, and J.-F. Li: Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloys. Compd. 551, 143 (2013).

    Article  CAS  Google Scholar 

  5. Y. Wu, B. Zhou, C. Yang, S. Liao, W.-H. Zhang, and C. Li: CuFeS2 colloidal nanocrystals as an efficient electrocatalyst for dye sensitized solar cells. Chem. Commun. 52, 11488 (2016).

    Article  CAS  Google Scholar 

  6. S. Ghosh, T. Avellini, A. Petrelli, I. Kriegel, R. Gaspari, G. Almeida, G. Bertoni, A. Cavalli, F. Scotognella, T. Pellegrino, and L. Manna: Colloidal CuFeS2 nanocrystals: intermediate Fe d-band leads to high photothermal conversion efficiency. Chem. Mater. 28, 4848 (2016).

    Article  CAS  Google Scholar 

  7. D. Aldakov, A. Lefrancois, and P. Reiss: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756 (2013).

    Article  CAS  Google Scholar 

  8. M. X. Wang, L. S. Wang, G. H. Yue, X. Wang, P. X. Yan, and D. L. Peng: Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater. Chem. Phys. 115, 147 (2009).

    Article  CAS  Google Scholar 

  9. E. J. Silvester, T. W. Healy, F. Grieser, and B. A. Sexton: Hydrothermal preparation and characterization of optically transparent colloidal chalcopyrite (CuFeS2). Langmuir 7, 19 (1991).

    Article  CAS  Google Scholar 

  10. S. K. Pradhan, B. Ghosh, and L. K. Samanta: Mechanosynthesis of nanocrystalline chalcopyrite. Phys. E. 33, 144 (2006).

    Article  CAS  Google Scholar 

  11. Y.-H. A. Wang, N. Bao, and A. Gupta: Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci. 12, 387 (2010).

    Article  CAS  Google Scholar 

  12. P. Kumar, S. Uma, and R. Nagarajan: Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2. Chem. Commun. 49, 7316 (2013).

    Article  CAS  Google Scholar 

  13. G. Gabka, P. Bujak, J. Żukrowski, D. Zabost, K. Kotwica, K. Malinowska, A. Ostrowski, I. Wielgus, W. Lisowski, and J. W. Sobczak: Non-injection synthesis of monodisperse Cu–Fe–S nanocrystals and their size dependent properties. Phys. Chem. Chem. Phys. 18, 15091 (2016).

    Article  CAS  Google Scholar 

  14. K. P. Bhandari, P. J. Roland, T. Kinner, Y. Cao, H. Choi, S. Jeong, and R. J. Ellingson: Analysis and characterization of iron pyrite nanocrystals and nanocrystalline thin films derived from bromide anion synthesis. J. Mater. Chem. A 3, 6853 (2015).

    Article  CAS  Google Scholar 

  15. T. Kinner, K. P. Bhandari, E. Bastola, B. M. Monahan, N. O. Haugen, P. J. Roland, T. P. Bigioni, and R. J. Ellingson: Majority Carrier Type Control of Cobalt Iron Sulfide (CoxFe1–xS2) Pyrite Nanocrystals. J. Phys. Chem. C 120, 5706 (2016).

    Article  CAS  Google Scholar 

  16. B. Bhattacharyya and A. Pandey: CuFeS2 quantum dots and highly luminescent CuFeS2 based core/shell structures: synthesis, tunability, and photophysics. J. Am. Chem. Soc. 138, 10207 (2016).

    Article  CAS  Google Scholar 

  17. K. P. Bhandari, P. Koirala, N. R. Paudel, R. R. Khanal, A. B. Phillips, Y. Yan, R. W. Collins, M. J. Heben, and R. J. Ellingson: Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 140, 108 (2015).

    Article  CAS  Google Scholar 

  18. A. J. Huckaba, P. Sanghyun, G. Grancini, E. Bastola, C. K. Taek, L. Younghui, K. P. Bhandari, C. Ballif, R. J. Ellingson, and M. K. Nazeeruddin: Exceedingly cheap perovskite solar cells using iron pyrite hole transport materials. Chemistryselect 1, 5316 (2016).

    Article  CAS  Google Scholar 

  19. E. Bastola, K. P. Bhandari, and R. J. Ellingson: Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells. J. Mater. Chem. C 5, 4996 (2017).

    Article  CAS  Google Scholar 

  20. E. Bastola, K. K. Subedi, K. P. Bhandari, and R. J. Ellingson: Solution-processed nanocrystal based thin films as hole transport materials in cadmium telluride photovoltaics. MRS Adv. 1 (2018). doi: 10.1557/adv.2018.349.

    Google Scholar 

  21. J. L. Freeouf and J. M. Woodall: Schottky barriers: an effective work function model. Appl. Phys. Lett. 39, 727 (1981).

    Article  CAS  Google Scholar 

  22. J. Jaffe and A. Zunger: Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2. Phys. Rev. B 28, 5822 (1983).

    Article  CAS  Google Scholar 

  23. T. Oguchi, K. Sato, and T. Teranishi: Optical reflectivity spectrum of a CuFeS2 single crystal. J. Phys. Soc. Jpn. 48, 123 (1980).

    Article  CAS  Google Scholar 

  24. T. Hamajima, T. Kambara, K. I. Gondaira, and T. Oguchi: Self-consistent electronic structures of magnetic semiconductors by a discrete variational Xα calculation. III. Chalcopyrite CuFeS2. Phys. Rev. B 24, 3349 (1981).

    Article  CAS  Google Scholar 

  25. E. Janik and R. Triboulet: Ohmic contacts to p-type cadmium telluride and cadmium mercury telluride. J. Phys. D: Appl. Phys. 16, 2333 (1983).

    Article  CAS  Google Scholar 

  26. E. Bastola, K. P. Bhandari, A. J. Matthews, N. Shrestha, and R. J. Ellingson: Elemental anion thermal injection synthesis of nanocrystalline marcasite iron dichalcogenide FeSe2 and FeTe2. RSC Adv. 6, 69708 (2016).

    Article  CAS  Google Scholar 

  27. Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie: A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 39, 5470 (2015).

    Article  CAS  Google Scholar 

  28. C. Xing, D. Zhang, K. Cao, S. Zhao, X. Wang, H. Qin, J. Liu, Y. Jiang, and L. Meng: In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 3, 8742 (2015).

    Article  CAS  Google Scholar 

  29. P. L. Saldanha, R. Brescia, M. Prato, H. Li, M. Povia, L. Manna, and V. Lesnyak: Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles. Chem. Mater. 26, 1442 (2014).

    Article  CAS  Google Scholar 

  30. J. I. Langford and A. Wilson: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).

    Article  CAS  Google Scholar 

  31. A. El-Trass, H. ElShamy, I. El-Mehasseb, and M. El-Kemary: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997 (2012).

    Article  CAS  Google Scholar 

  32. P. Liu, W. Cai and H. Zeng: Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112, 3261 (2008).

    Article  CAS  Google Scholar 

  33. A. M. Wiltrout, N. J. Freymeyer, T. Machani, D. P. Rossi, and K. E. Plass: Phase-selective synthesis of bornite nanoparticles. J. Mater. Chem. 21, 19286 (2011).

    Article  CAS  Google Scholar 

  34. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens: Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano 3, 3023 (2009).

    Article  CAS  Google Scholar 

  35. W. Li, M. Doblinger, A. Vaneski, A. L. Rogach, F. Jackel, and J. Feldmann: Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly. J. Mater. Chem. 21, 17946 (2011).

    Article  CAS  Google Scholar 

  36. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp: Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater. 15, 3142 (2003).

    Article  CAS  Google Scholar 

  37. Y. Xu and M. A. Schoonen: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543 (2000).

    Article  CAS  Google Scholar 

  38. W. Chunrui, X. Shaolin, H. Junqing, and T. Kaibin: Raman, far infrared, and mössbauer spectroscopy of CuFeS2 Nanocrystallites. Jpn. J. Appl. Phys. 48, 023003 (2009).

    Article  CAS  Google Scholar 

  39. I. Subedi, K. P. Bhandari, R. J. Ellingson, and N. J. Podraza: Near infrared to ultraviolet optical properties of bulk single crystal and nanocrystal thin film iron pyrite. Nanotechnology 27, 295702 (2016).

    Article  CAS  Google Scholar 

  40. V. D. Bruggeman: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636 (1935).

    Article  Google Scholar 

  41. T. Teranishi and K. Sato: Optical, electrical and magnetic properties of chalcopyrite, CuFeS2. J. Phys. Colloques 36, C3 (1975).

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge funding from the US National Science Foundation Sustainable Energy Pathways program for funding under Grant CHE-1230246, the U.S. Air Force Research Laboratory, Space Vehicles Directorate (contract # FA9453-11-C-0253), the Ohio Department of Development Ohio Research Scholar Program Northwest Ohio Innovators in Thin Film Photovoltaics Grant No. TECH 09-025, and startup funds provided by the University of Toledo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy J. Ellingson.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastola, E., Bhandari, K.P., Subedi, I. et al. Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS2) nanocrystals. MRS Communications 8, 970–978 (2018). https://doi.org/10.1557/mrc.2018.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.117

Navigation