Skip to main content
Log in

Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Continuum modeling approaches are well established in materials science and engineering of metals. They enable the quantitative investigation of diverse questions related to the improved understanding of mechanics and microstructure evolution of various material classes. Applicable to time and length scales relevant in manufacturing and service, continuum modeling approaches are idely used to study engineering-related phenomena such as recrystallization, strain localization, fracture initiation, and phase transformations. However, focusing on individual physical aspects hampers the wider routine use of continuum modeling tools for many engineering applications. With the advent of multi-physics modeling tools developed with the help of and parametrized by (sub-)micrometer-scale simulations and experiments, a huge variety of applications such as hot rolling, bake-hardening, and case-hardening comes within reach for full-field integrated computational materials engineering. Moreover, the integration of experimentally characterized microstructures and the use of user friendly simulation and evaluation tools render powerful modeling approaches feasible for a broad materials science user community. The state of the art and future trends of mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale are outlined in this prospective article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe: Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications. Acta Mater. 58, 1152 (2010).

    CAS  Google Scholar 

  2. F. Roters, P. Eisenlohr, T.R. Bieler, and D. Raabe: Crystal Plasticity Finite Element Methods in Materials Science and Engineering (Wiley–VCH, Weinheim, 2010).

    Google Scholar 

  3. P.R. Dawson: Crystal plasticity. In Computational Materials Science, edited by D. Raabe (Wiley–VCH, Weinheim, 2005), p. 115.

    Google Scholar 

  4. J.L. Chaboche: Continuum damage mechanics 1. General concepts. J. Appl. Mech. 55, 59 (1988).

    Google Scholar 

  5. G.Z. Voyiadjis (editor): Handbook of Damage Mechanics (Springer, New York, 2015).

    Google Scholar 

  6. C. Miehe, F. Welschinger, and M. Hofacker: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273 (2010).

    Google Scholar 

  7. I. Steinbach: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Google Scholar 

  8. N. Provatas and K. Elder: Phase-Field Methods in Materials Science and Engineering (Wiley–VCH, Weinheim, 2010).

    Google Scholar 

  9. N. Moelans, B. Blanpain, and P. Wollants: An introduction to phase-field modeling of microstructure evolution. Calphad 32, 268 (2008).

    CAS  Google Scholar 

  10. L.-Q. Chen: Introduction to the phase-field method of microstructure evolution. In Computational Materials Science, edited by D. Raabe (Wiley–VCH, Weinheim, 2005), p. 37.

    Google Scholar 

  11. S. Wolfram, ed.: Theory and applications of cellular automata. In Advanced Series on Complex Systems (World Scientific, Singapore, 1, 1986), p. 485.

    Google Scholar 

  12. H. Hallberg: Approaches to modeling of recrystallization. Metals 1, 16 (2011).

    CAS  Google Scholar 

  13. D. Raabe: Cellular automata in materials science with particular reference to recrystallization simulation. Annu. Rev. Mater. Res. 32, 53 (2002).

    CAS  Google Scholar 

  14. F. Han, B. Tang, H. Kou, J. Li, and Y. Feng: Cellular automata modeling of static recrystallization based on the curvature driven subgrain growth mechanism. J. Mater. Sci. 48, 7142 (2013).

    CAS  Google Scholar 

  15. N. Moelans, F. Wendler, and B. Nestler: Comparative study of two phase-field models for grain growth. Comput. Mater. Sci. 46, 479 (2009).

    Google Scholar 

  16. F.E. Hildebrand and C. Miehe: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Phil. Mag. 92, 4250 (2012).

    CAS  Google Scholar 

  17. V.I. Levitas: Phase field approach to martensitic phase transformations with large strains and interface stresses. J. Mech. Phys. Solids 70, 154 (2014).

    Google Scholar 

  18. C. Vannozzi, D. Fiorentino, M. D’Amore, D.S. Rumshitzki, A. Dress, and R. Mauri: Cellular automata model of phase transition in binary mixtures. Ind. Eng. Chem. Res. 45, 2892 (2006).

    CAS  Google Scholar 

  19. J.A. Warren, W.C. Carter, and R. Kobayashi: A phase field model of the impingement of solidifying particles. Physica A 261, 159 (1998).

    Google Scholar 

  20. L. Gránásy, T. Pusztai, T. Börzsönyi, G. Tóth, G. Tegze, J.A. Warren, and J.F. Douglas: Phase field theory of crystal nucleation and polycrystalline growth: a review. J. Mater. Res. 21, 309 (2006).

    Google Scholar 

  21. M.B. Cortie: Simulation of metal solidification using a cellular automaton. Metall. Trans. B 24, 1045 (1993).

    Google Scholar 

  22. M. Asle Zaeem, H. Yin, and S.D. Felicelli: Modeling dendritic solidification of Al-3%Cu using cellular automaton and phase-field methods. Appl. Math. Model. 37, 3495 (2013).

    Google Scholar 

  23. J.E. Bishop and H. Lim: Continuum approximations. In Multiscale Materials Modeling for Nanomechanics, edited by C.R. Weinberger and G.J. Tucker (Springer International Publishing, Cham, 2016), p. 89.

    Google Scholar 

  24. L.P. Kadanoff: Statistical Physics. Statics, Dynamics and Renormalization (World Scientific, Singapur, 2011).

    Google Scholar 

  25. M. Koyama, M. Rohwerder, C.C. Tasan, A. Bashir, E. Akiyama, K. Takai, D. Raabe, and K. Tsuzaki: Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation. Mater. Sci. Technol. 33, 1481 (2017).

    CAS  Google Scholar 

  26. G. Kugler and R. Turk: Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput. Mater. Sci. 37, 284 (2006).

    CAS  Google Scholar 

  27. J. Pagenkopf, A. Butz, M. Wenk, and D. Helm: Virtual testing of dual-phase steels: Effect of martensite morphology on plastic flow behavior. Mater. Sci. Eng. A 674, 672 (2016).

    CAS  Google Scholar 

  28. H. Zhang, M. Diehl, F. Roters, and D. Raabe: A virtual laboratory for initial yield surface determination using high resolution crystal plasticity simulations. Int. J. Plas. 80, 111 (2016).

    CAS  Google Scholar 

  29. M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, and F. Roters: Virtual material testing for stamping simulations based on polycrystal plasticity. Comput. Mater. Sci. 46, 383 (2009).

    CAS  Google Scholar 

  30. F.P.E. Dunne, D. Rugg, and A. Walker: Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys. Int. J. Plas. 23, 1061 (2007).

    CAS  Google Scholar 

  31. M.A. Cuddihy, A. Stapleton, S. Williams, and F.P.E. Dunne: On cold dwell facet fatigue in titanium alloy aero-engine components. Int. J. Fatique 97, 177 (2017).

    CAS  Google Scholar 

  32. J.V. Goerler, I. Lopez-Galilea, L. Mujica Roncery, O. Shchyglo, W. Theisen, and I. Steinbach: Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation. Acta Mater. 124, 158 (2017).

    Google Scholar 

  33. R.L. Goetz and V. Seetharaman: Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model. Metall. Mater. Trans. A 29, 2307 (1998).

    Google Scholar 

  34. D. Raabe and R.C. Becker: Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Model. Simul. Mater. Sci. Eng. 8, 445 (2000).

    CAS  Google Scholar 

  35. O. Güvenc, T. Henke, G. Laschet, B. Böttger, M. Apel, M. Bambach, and G. Hirt: Modelling of static recrystallization kinetics by coupling crystal plasticity FEM an multiphase field simulations. Comput. Meth. Mater. Sci. 13, 368 (2003).

    Google Scholar 

  36. F. Han, B. Tang, H. Kou, L. Cheng, J. Li, and Y. Feng: Static recrystallization simulations by coupling cellular automata and crystal plasticity finite element method using a physically based model for nucleation. J. Mater. Sci. 49, 3253 (2014).

    CAS  Google Scholar 

  37. H. Lim, F Abdeljawad, S.J. Owen, B.W. Hanks, J.W. Foulk, and C.C. Battaile: Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks. Modelling Simul. Mater. Sci. Eng. 24, 045016 (2016).

    Google Scholar 

  38. H. Moulinec and P. Suquet: A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. II 318, 1417 (1994).

    Google Scholar 

  39. R.A. Lebensohn: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater. 49, 2723 (2001).

    CAS  Google Scholar 

  40. A. Vidyasagar, W.L. Tan, and D.M. Kochmann: Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods. J. Mech. Phys. Solids 106, 133 (2017).

    CAS  Google Scholar 

  41. L. Hernández Encinas, S. Hoya White, A. Martín Del Rey, and G. Rodríguez Sánchez: Modelling forest fire spread using hexagonal cellular automata. Appl. Math. Model. 31, 1213 (2007).

    Google Scholar 

  42. C. Reina and S. Conti: Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=FeFp. J. Mech. Phys. Solids 67, 40 (2014).

    Google Scholar 

  43. G. Abrivard, E.P. Busso, S. Forest, and B. Appolaire: Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: Theory and numerical implementation. Phil. Mag. 92, 3618 (2012).

    CAS  Google Scholar 

  44. G. Abrivard, E.P. Busso, S. Forest, and B. Appolaire: Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: Application to recrystallisation. Phil. Mag. 92, 3643 (2012).

    CAS  Google Scholar 

  45. L. Chen, J. Chen, R.A. Lebensohn, Y.Z. Ji, T.W. Heo, S. Bhattacharyya, K. Chang, S. Mathaudhu, Z.K. Liu, and L.-Q. Chen: An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput. Methods Appl. Mech. Eng. 285, 829 (2015).

    Google Scholar 

  46. J. Hiebeler: Recovery and recrystallization during hot deformation in austenitic steel. Ph.D. Thesis, Bochum, 2016.

    Google Scholar 

  47. P. Zhao, T. Song En Low, Y. Wang, and S.R. Niezgoda: An integrated full-field model of concurrent plastic deformation and microstructure evolution: application to 3D simulation of dynamic recrystallization in polycrystalline copper. Int. J. Plas. 80, 38 (2016).

    CAS  Google Scholar 

  48. C. Bos, M.G. Mecozzi, and J. Sietsma: A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput. Mater. Sci. 48, 692 (2010).

    CAS  Google Scholar 

  49. P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, and D. Raabe: A phase field model for damage in elasto-viscoplastic materials. Comput. Methods Appl. Mech. Eng. 312, 167 (2016).

    Google Scholar 

  50. P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, and D. Raabe: Spectral solvers for crystal plasticity and multi-physics. In Handbook of Mechanics of Materials, edited by C.-H. Hsueh, S. Schmauder, C.-S. Chen, K. K. Chawla, N. Chawla, W. Chen, and Y. Kagawa (Springer Nature Singapore, Singapore, 2017).

    Google Scholar 

  51. M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, and D. Raabe: Coupled crystal plasticity–phase field fracture simulation study on damage evolution around a void: Pore shape versus crystallographic orientation. JOM 69, 872 (2017).

    CAS  Google Scholar 

  52. M.R. Bache, F.P.E. Dunne, and C. Madrigal: Experimental and crystal plasticity studies of deformation and crack nucleation in a titanium alloy. J. Strain Anal. Eng. 45, 391 (2010).

    Google Scholar 

  53. C. Schwarze, A. Gupta, T. Hickel, and R. Darvishi Kamachali: Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling. Phys. Rev. B. 95, 174101 (2017).

    Google Scholar 

  54. D. Raabe and L. Hantcherli: 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Comput. Mater. Sci. 34, 299 (2005).

    CAS  Google Scholar 

  55. A. Gaubert, Y. Le Bouar, and A. Finel: Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Phil. Mag. 90, 375 (2010).

    CAS  Google Scholar 

  56. C. Reuber, P. Eisenlohr, F. Roters, and D. Raabe: Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite element predictions with experiments. Acta Mater. 71, 333 (2014).

    CAS  Google Scholar 

  57. D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, and J. Marian: Unraveling the temperature dependence of the yield strength in single-crystal Tungsten using atomistically-informed crystal plasticity calculations. Int. J. Plas. 78, 242 (2016).

    CAS  Google Scholar 

  58. A. Köster, A. Ma, and A. Hartmaier: Atomistically informed crystal plasticity model for body-centered cubic iron. Acta Mater. 60, 3894 (2012).

    Google Scholar 

  59. S. Queyreau, G. Monnet, and B. Devincre: Slip systems interactions in alpha-iron determined by dislocation dynamics simulations. Int. J. Plas. 25, 361 (2009).

    CAS  Google Scholar 

  60. B. Devincre: Dislocation dynamics simulations of slip systems interactions and forest strengthening in ice single crystal. Phil. Mag. 93, 235 (2013).

    CAS  Google Scholar 

  61. B. Devincre, L. Kubin, and T. Hoc: Physical analyses of crystal plasticity by DD simulations. Scr. Mater. 54, 741 (2006).

    CAS  Google Scholar 

  62. N. Bertin, C.N. Tomé, I.J. Beyerlein, M.R. Barnett, and L. Capolungo: On the strength of dislocation interactions and their effect on latent hardening in pure magnesium. Int. J. Plas. 62, 72 (2014).

    CAS  Google Scholar 

  63. M. Stricker: Die Übertragung von mikrostrukturellen Eigenschaften aus der diskreten Versetzungsdynamik in Kontinuumsbeschreibungen. Ph.D. Thesis, Karlsruhe, 2017.

    Google Scholar 

  64. M. Stricker and D. Weygand: Dislocation multiplication mechanisms—glissile junctions and their role on the plastic deformation at the microscale. Acta Mater. 99, 130 (2015).

    CAS  Google Scholar 

  65. R.E. Jones, J.A. Zimmerman, and G. Po: Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion. J. Mater Sci. Res. 5, 44 (2016).

    CAS  Google Scholar 

  66. S. Groh, E.B. Marin, M.F. Horstemeyer, and H.M. Zbib: Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plas. 25, 1456 (2009).

    CAS  Google Scholar 

  67. S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe: A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 118, 140 (2016).

    CAS  Google Scholar 

  68. P. Zhao, C. Shen, J. Li, and Y. Wang: Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation. NPJ Comput. Mater. 3, 19 (2017).

    Google Scholar 

  69. O. Shchyglo, T. Hammerschmidt, M. Cak, R. Drautz, and I. Steinbach: Atomistically informed extended Gibbs energy description for phase-field simulation of tempering of martensitic steel. Materials 9, 669 (2016).

    Google Scholar 

  70. T. Hickel, U.R. Kattner, and S.G. Fries: Computational thermodynamics: recent developments and future potential and prospects. Phys. Status Solidi (b) 251, (2014). http://onlinelibrary.wiley.co/doi/10.1002/pssb.201470101/full

  71. J. Amodeo, C. Begau, and E. Bitzek: Atomistic simulations of compression tests on Ni3Al nanocubes. Mater. Res. Lett. 2, 140 (2014).

    Google Scholar 

  72. J. Senger, D. Weygand, O. Kraft, and P. Gumbsch: Dislocation microstructure evolution in cyclically twisted microsamples: a discrete dislocation dynamics simulation. Model. Simul. Mater. Sci. Eng. 19, 074004 (2011).

    Google Scholar 

  73. B. Karlsson and B.O. Sundström: Inhomogeneity in plastic deformation of two-phase steels. Mater. Sci. Eng. 16, 161 (1974).

    CAS  Google Scholar 

  74. S.-H. Choi, E.-Y. Kim, W. Woo, S.H. Han, and J.H. Kwak: The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int. J. Plas. 45, 85 (2013).

    CAS  Google Scholar 

  75. L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, and G.E. Ice: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline a-Ti. Metall. Mater. Trans. A 42, 626 (2011).

    CAS  Google Scholar 

  76. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, and D. Raabe: Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys. Acta Mater. 81, 386 (2014).

    CAS  Google Scholar 

  77. C. Pinna, Y. Lan, M.F. Kiu, P. Efthymiadis, M. Lopez-Pedrosa, and D. Farrugia: Assessment of crystal plasticity finite element simulations of the hot deformation of metals from local strain and orientation measurements. Int. J. Plas. 73, 24 (2015).

    CAS  Google Scholar 

  78. B. Zhu and M. Militzer: 3D phase field modelling of recrystallization in a low-carbon steel. Model. Simul. Mater. Sci. Eng. 20, 085011 (2012).

    Google Scholar 

  79. C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L Wong, F. Roters, D.A. Molodov, and G. Gottstein: Recrystallization behavior of a high-manganese steel: Experiments and simulations. Acta Mater. 100, 155 (2015).

    CAS  Google Scholar 

  80. R.J. Contieri, M. Zanotello, and R. Caram: Simulation of cp-Ti recrystallization and grain growth by a cellular automata algorithm: Simulated versus experimental results. Mater. Res. 20, 688 (2017).

    CAS  Google Scholar 

  81. H. Abdolvand and M.R. Daymond: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach. Part I: Average behavior. J. Mech. Phys. Solids 61, 783 (2013).

    CAS  Google Scholar 

  82. V.V.C. Wan, M.A. Cuddihy, J. Jiang, D.W. MacLachlan, and F.P.E. Dunne: An hr-EBSD and computational crystal plasticity investigation of microstructural stress distributions and fatigue hotspots in polycrystalline copper. Acta Mater. 115, 45 (2016).

    CAS  Google Scholar 

  83. M.A. Groeber and M.A. Jackson: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 5 (2014).

    Google Scholar 

  84. A. Zeghadi, F. Nguyen, S. Forest, A.-F. Gourgues, and O. Bouaziz: Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure. Part 1: Anisotropic elastic behaviour. Phil. Mag. 87, 1401 (2007).

    CAS  Google Scholar 

  85. A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz: Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure. Part 2: Crystal plasticity. Phil. Mag. 87, 1425 (2007).

    CAS  Google Scholar 

  86. M. Diehl, P. Shanthraj, P. Eisenlohr, and F. Roters: Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51, 429 (2016).

    Google Scholar 

  87. L. Wang, M. Li, J. Almer, T. Bieler, and R. Barabash: Microstructural characterization of polycrystalline materials by synchrotron X-rays. Front. Mater. Sci. 7, 156 (2013).

    Google Scholar 

  88. C. Zhang, H. Li, P. Eisenlohr, W.J. Liu, C.J. Boehlert, M.A. Crimp, and T.R. Bieler: Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn. Int. J. Plas. 69, 21 (2015).

    CAS  Google Scholar 

  89. H. Abdolvand, M. Majkut, J. Oddershede, J.P. Wright, and M.R. Daymond: Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II—crystal plasticity finite element modeling. Acta Mater. 93, 235 (2015).

    CAS  Google Scholar 

  90. R. Pokharel, J. Lind, S.F. Li, P. Kenesei, R.A. Lebensohn, R.M. Suter, and A.D. Rollett: In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int. J. Plas. 67, 217 (2015).

    CAS  Google Scholar 

  91. T.J. Turner, P.A. Shade, J.V. Bernier, S.F. Li, J.C. Schuren, J. Lind, U. Lienert, P. Kenesei, R.M. Suter, B. Blank, and J. Almer: Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ. Integr. Mater. Manuf. Innov. 5, 5 (2016).

    Google Scholar 

  92. E. Maire and P.J. Withers: Quantitative X-ray tomography. Int. Mater. Rev. 59, 1 (2014).

    CAS  Google Scholar 

  93. S.A. McDonald, P. Reischig, C. Holzner, E.M. Lauridsen, P.J. Withers, A.P. Merkle, and M. Feser: Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci. Rep. 5, 14665 (2015).

    CAS  Google Scholar 

  94. S. Zaefferer, S.I. Wright, and D. Raabe: Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 39, 374 (2008).

    Google Scholar 

  95. M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, and D. Raabe: Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure. Phys. Mesomech. 20, 311 (2017).

    Google Scholar 

  96. K. Moreland: Diverging color maps for scientific visualization. In Proc. Adv. in Vis. Comut. 5th Int. Symp. Part II, edited by G. Bebis, R. Boyle, B. Parvin, D. Koracin, Y. Kuno, J. Wang, R. Pajarola, P. Lindstrom, A. Hinkenjann, M.L. Encarnação, C.T. Silva, and D. Coming (Springer, Berlin/Heidelberg, 2009), p. 92.

    Google Scholar 

  97. D. Borland and R.M. Taylor: Rainbow color map (still) considered harmful. IEEE Comput. Graph. Appl. 27, 14 (2007).

    Google Scholar 

  98. U. Liedl, S. Traint, and E. Werner: An unexpected feature of the stress–strain diagram of dual-phase steel. Comput. Mater. Sci. 25, 122 (2002).

    CAS  Google Scholar 

  99. T.W.J. De Geus, R.H.J. Peerlings, and M.G.D. Geers: Microstructural topology effects on the onset of ductile failure in multi-phase materials—A systematic computational approach. Int. J. Solids Struct. 67, 326 (2015).

    Google Scholar 

  100. S.R. Kalidindi and M. De Graef: Materials data science: Current status and future outlook. Annu. Rev. Mater. Res. 45, 171 (2015).

    CAS  Google Scholar 

  101. A. Chowdhury, E. Kautz, B. Yener, and D. Lewis: Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123, 176 (2016).

    Google Scholar 

  102. B.L. DeCost and E.A. Holm: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 133 (2015).

    Google Scholar 

  103. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, and F. Mücklich: Advanced steel microstructure classification by deep learning methods (2017). arXiv:1706.06480.

    Google Scholar 

  104. J.A. Gomberg, A.J. Medford, and S.R. Kalidindi: Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Mater. 133, 100 (2017).

    CAS  Google Scholar 

  105. M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson: An overview of the HDF5 technology suite and its applications. In Proceeding AD ’11 Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases, Uppsala, Sweden–March 25, 2011, pp. 36–47.

    Google Scholar 

  106. M. Jackson, J.P. Simmons, and M. De Graef: MXA: A customizable HDF5-based data format for multi-dimensional data sets. Model. Simul. Mater. Sci. Eng. 18, 065008 (2010).

    Google Scholar 

  107. M.A. Jackson, M.A. Groeber, M.D. Uchic, D.J. Rowenhorst, and M. Graef: H5EBSD: An archival data format for electron back-scatter diffraction data sets. Integr. Mater. Manuf. Innov. 3, 4 (2014).

    Google Scholar 

  108. G.J. Schmitz: Microstructure modeling in integrated computational materials engineering (ICME) settings: Can HDF5 provide the basis for an emerging standard for describing microstructures? JOM 68, 77 (2016).

    Google Scholar 

  109. M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, and F. Roters: A flexible and efficient output file format for grain-scale multiphysics simulations. Integr. Mater. Manuf. Innov. 6, 83 (2017).

    Google Scholar 

  110. Y. Huang: A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Technical Report. Cambridge (1991).

    Google Scholar 

  111. F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, and D. Raabe: DAMASK: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. In Procedia IUTAM: IUTAM Symposium on Linking Scales in Computation: From Microstructure to Macroscale Properties, edited by O. Cazacu (Elsevier, Amsterdam, 3, 2012), p. 3.

    Google Scholar 

  112. J.E. Guyer, D. Wheeler, and J.A. Warren: Fipy: Partial differential equations with python. Comput. Sci. Eng. 11, 6 (2009).

    CAS  Google Scholar 

  113. D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandié: MOOSE: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768 (2009).

    CAS  Google Scholar 

  114. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes, and G. Wells: The FEniCS project version 1.5. Arch. Numer. Soft. 3, (2015).

  115. D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells: The deal.II library, version 8.5. J. Numer. Math. (2017).

    Google Scholar 

  116. F. Meier, C. Schwarz, and E. Werner: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122 (2014).

    CAS  Google Scholar 

  117. N. Grilli, K.G.F. Janssens, and H. Van Swygenhoven: Crystal plasticity finite element modelling of low cycle fatigue in fcc metals. J. Mech. Phys. Solids 84, 424 (2015).

    CAS  Google Scholar 

  118. A. Ebrahimi and T. Hochrainer: Three-dimensional continuum dislocation dynamics simulations of dislocation structure evolution in bending of a micro-beam. MRS Adv. 1, 1791 (2016).

    CAS  Google Scholar 

Download references

Acknowledgments

The funding of the TCMPrecipSteel project in the framework of the SPP 1713 “Strong coupling of thermo-chemical and thermo-mechanical states in applied materials” by the Deutsche Forschungsgemeinschaft (DFG) and the support of D. Raabe and F. Roters in writing this article are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Diehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, M. Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications 7, 735–746 (2017). https://doi.org/10.1557/mrc.2017.98

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.98

Navigation