Skip to main content

Advertisement

Log in

Assessment of trends in the electrochemical CO2 reduction and H2 evolution reactions on metal nanoparticles

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We used density functional theory to investigate the electrochemical CO2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H2 evolution is the first reaction to be energetically allowed at zero applied bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. D.T. Whipple and P.J. Kenis: Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451 (2010).

    Article  CAS  Google Scholar 

  2. Y. Hori: Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry, edited by C.G. Vayenas, R.E. White, and M.E. Gamboa-Aldeco (Springer, New York, 2008, p. 1).

    Google Scholar 

  3. M. Gattrell, N. Gupta, and A. Co: A review of the aqeous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electrochem. Chem. 594, 1 (2006).

    CAS  Google Scholar 

  4. M. Aresta: Carbon Dioxide as Chemical Feedstock (Wiley, Wienheim, 2010).

    Book  Google Scholar 

  5. I. Ganesh: Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunity. Renew. Sustain. Energy Rev. 31, 221 (2014).

    Article  CAS  Google Scholar 

  6. E.E. Benson, C.P. Kubiak, A.J. Sathrum, and J.M. Smieja: Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89 (2009).

    Article  CAS  Google Scholar 

  7. W. Zhu, R. Michalski, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, and S. Sun: Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833 (2013).

    Article  CAS  Google Scholar 

  8. H. Mistry, R. Reske, Z. Zeng, Z-J. Zhao, J. Greeley, P. Strasser, and B. Roldan Cuenya: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473 (2014).

    Article  CAS  Google Scholar 

  9. R. Reske, H. Mistry, F. Behafarid, B. Cuenya, and P. Strasser: Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978 (2014).

    Article  CAS  Google Scholar 

  10. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, and X. Bao: Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288 (2012).

    Article  Google Scholar 

  11. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  12. G. Kresse and J. Furthmüller: Effeciency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  13. J.P. Perdew, K. Burke, and M. Enzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  14. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  15. W. Tang, L. Zhang, and G. Henkelman: Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction. J. Phys. Chem. Lett. 2, 1328 (2011).

    Article  CAS  Google Scholar 

  16. C.J. Cramer: Essentials of Computational Chemistry: Theories and Models, 2nd ed. (Wiley: West Sussex, 2004).

    Google Scholar 

  17. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J.K. Norskov: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010).

    Article  CAS  Google Scholar 

  18. H.A. Hansen, J.B. Varley, A.A. Peterson, and J. Norskov: Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388 (2013).

    Article  CAS  Google Scholar 

  19. W. Zhu, W.J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalski, A.A. Peterson, and S. Sun: Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132 (2014).

    Article  CAS  Google Scholar 

  20. B. Hammer, L.B. Hansen, and J. Norskov: Improved adsorption energetics within density functional theory using revised Perdew–Burke–Enzerhoff functionals. Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  21. S. Back, M.S. Yeom, and Y. Jung: Active sites of au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5, 5089 (2015).

    Article  CAS  Google Scholar 

  22. D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, and X. Bao: Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 137, 4288 (2015).

    Article  CAS  Google Scholar 

  23. V. Tripkovic, M. Vanin, M. Karamad, M.E. Bjorketum, K.W. Jacobsen, K.S. Thygesen, and J. Rossmeisl: Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of author(s) expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic R. Alfonso.

Supplementary Materials

Supplementary Materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfonso, D.R., Kauffman, D.R. Assessment of trends in the electrochemical CO2 reduction and H2 evolution reactions on metal nanoparticles. MRS Communications 7, 601–606 (2017). https://doi.org/10.1557/mrc.2017.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.67

Navigation