Skip to main content

Advertisement

Log in

The need for advanced three-dimensional neural models and developing enabling technologies

  • Biomaterials for 3D Cell Biology Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Neurological and psychiatric disorders account for an increasing proportion of the global disease burden. Correspondingly the neuropharmaceutical industry has experienced a significant contraction in recent years resulting in a poor variety of therapies available to treat an expanding range of conditions. Perhaps the greatest contributor to this failure in drug-discovery is the lack of understanding of the underlying biology of the nervous system and how molecular scale events translate into macroscale pathologies. Due to the unique nature of the human nervous system commonly used model organisms are often poorly representative of human pathologies resulting in a need for the development of advanced in vitro models that are capable of faithfully modeling complex structures within the brain. In this prospective, strategies for the generation of neuronal circuits and cultivation of complex three-dimensional (3D) cultures are explored. Frequently these constructs provide valuable insights into systems and processes that are difficult to explore in vivo due to the isolated and delicate nature of neuronal tissues. New developments are required to assess the physiological functions of 3D tissues in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. C. Mathers, D.M. Fat, and J.T. Boerma: The Global Burden of Disease: 2004 Update (World Health Organization, Switzerland, 2008).

    Book  Google Scholar 

  2. H.U. Wittchen, F. Jacobi, J. Rehm, A. Gustavsson, M. Svensson, and B. Jönsson: The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21(9), 655–679 (2010).

    Article  Google Scholar 

  3. J. Olesen, A. Gustavsson, M. Svensson, H.U. Wittchen, and B. Jönsson: The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162 (2012).

    Article  CAS  Google Scholar 

  4. inVentive Health PR Group. An Advocacy Rx for Progress in Mental Health, InVentiv Health Blog (2017). Available at: http://eddas.eu (accessed March 20, 2017).

    Google Scholar 

  5. S.E. Hyman: Revolution stalled. Sci. Transl. Med. 4(155), 155–159 (2012).

    Article  Google Scholar 

  6. J. Skripka-Serry: The great neuro-pipeline brain drain. Drug Discov. World. Blog post (2013). Available at http://www.ddw-online.com (accessed March 22, 2017).

    Google Scholar 

  7. N. Kanwisher: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107, 11163–11170 (2010).

    Article  CAS  Google Scholar 

  8. O. Sporns, G. Tononi, and R. Kötter: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    Article  Google Scholar 

  9. S. Herculano-Houzel, B. Mota, and R. Lent: Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. USA 103, 12138–12143 (2006).

    Article  CAS  Google Scholar 

  10. S. Dorus, E.J. Vallender, P.D. Evans, J.R. Anderson, S.L. Gilbert, M. Mahowald, G.J. Wyckoff, C.M. Malcom, and B.T. Lahn: Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    Article  CAS  Google Scholar 

  11. C.C. Sherwood, F. Subiaul, and T.W. Zawidzki: A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212, 426–454 (2008).

    Article  Google Scholar 

  12. I.H. Smart, C. Dehay, P. Giroud, M. Berland, and H. Kennedy: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    Article  Google Scholar 

  13. B. Sadaghiani, B.J. Crawford, and J.R. Vielkind: Changes in the distribution of extracellular matrix components during neural crest development in Xiphophorus spp. embryos. Can. J. Zool. 72, 1340–1353 (1994).

    Article  Google Scholar 

  14. E. Hartfuss, R. Galli, N. Heins, and M. Götz: Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  Google Scholar 

  15. T.E. Anthony, C. Klein, G. Fishell, and N. Heintz: Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  Google Scholar 

  16. R.T. Ferri and P. Levitt: Regulation of regional differences in the differentiation of cerebral cortical neurons by EGF family-matrix interactions. Development 121, 1151–1160 (1995).

    Article  CAS  Google Scholar 

  17. C.S. Barros, S.J. Franco, and U. Müller: Extracellular matrix: functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3, a005108 (2011).

    Article  Google Scholar 

  18. J.M. Barnes, L. Przybyla, and V.M. Weaver: Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    Article  CAS  Google Scholar 

  19. D.E. Koser, A.J. Thompson, S.K. Foster, A. Dwivedy, E.K. Pillai, G.K. Sheridan, H. Svoboda, M. Viana, L. da F Costa, J. Guck, and C.E. Holt: Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    Article  CAS  Google Scholar 

  20. T.J. Petros, J.A. Tyson, and S.A. Anderson: Pluripotent stem cells for the study of CNS development. Front. Mol. Neurosci. 4, 30–41 (2011).

    Article  CAS  Google Scholar 

  21. J.T. Paridaen and W.B. Huttner: Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 15, 351–364 (2014).

    Article  CAS  Google Scholar 

  22. C.J. Medberry, P.M. Crapo, B.F. Siu, C.A. Carruthers, M.T. Wolf, S.P. Nagarkar, V. Agrawal, K.E. Jones, J. Kelly, S.A. Johnson, and S.S. Velankar: Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34, 1033–1040 (2013).

    Article  CAS  Google Scholar 

  23. J.T. Rutka, G. Apodaca, R. Stern, and M. Rosenblum: The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155–170 (1988).

    Article  CAS  Google Scholar 

  24. R. Eva and J. Fawcett: Integrin signalling and traffic during axon growth and regeneration. Curr. Opin. Neurobiol. 27, 179–185 (2014).

    Article  CAS  Google Scholar 

  25. K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, and K.E. Healy: Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    Article  CAS  Google Scholar 

  26. P.K. Grant and C.B. Moens: The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Dev. 5, 9 (2010).

    Article  Google Scholar 

  27. E.R. Burnside and E.J. Bradbury: Review: manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 40, 26–59 (2014).

    Article  CAS  Google Scholar 

  28. A. Dityatev, G. Brückner, G. Dityateva, J. Grosche, R. Kleene, and M. Schachner: Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev. Neurobiol. 67, 570–588 (2007).

    Article  CAS  Google Scholar 

  29. K.A. Giamanco, M. Morawski, and R.T. Matthews: Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170, 1314–1327 (2010).

    Article  CAS  Google Scholar 

  30. P. Weber, U. Bartsch, M.N. Rasband, R. Czaniera, Y. Lang, H. Bluethmann, R.U. Margolis, S.R. Levinson, P. Shrager, D. Montag, and M. Schachner: Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J. Neurosci. 19, 4245–4262 (1999).

    Article  CAS  Google Scholar 

  31. J. Bousquet and J.M. Meunier: Organotypic culture, on natural and artificial media, of fragments of the adult rat hypophysis. C. R. Seances Soc. Biol. Fil. 156, 65–67 (1962).

    CAS  Google Scholar 

  32. A.G. Bragin and O.S. Vinogradova: Comparison of neuronal activity in septal and hippocampal grafts developing in the anterior eye chamber of the rat. Dev. Brain Res. 10, 279–286 (1983).

    Article  Google Scholar 

  33. R.L. Fisher and A.E. Vickers: Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica 43, 8–14 (2013).

    Article  CAS  Google Scholar 

  34. D. Pozzi, J. Ban, F. Iseppon, and V. Torre: An improved method for growing neurons: comparison with standard protocols. J. Neurosci. Methods 280, 1–10 (2017).

    Article  CAS  Google Scholar 

  35. A. Henschen, B. Hoffer, and L. Olson: Spinal cord grafts in oculo: survival, growth, histological organization and electrophysiological characteristics. Exp. Brain Res. 60, 38–47 (1985).

    Article  CAS  Google Scholar 

  36. J. Marksteiner and C. Humpel: Beta-amyloid expression, release and extracellular deposition in aged rat brain slices. Mol. Psychiatry 13, 939–952 (2008).

    Article  CAS  Google Scholar 

  37. S. Alcántara, J. Frisén, J.A. del Río, E. Soriano, M. Barbacid, and I. Silos-Santiago: TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J. Neurosci. 17, 3623–3633 (1997).

    Article  Google Scholar 

  38. C. Weis, J. Marksteiner, and C. Humpel: Nerve growth factor and glial cell line-derived neurotrophic factor restore the cholinergic neuronal phenotype in organotypic brain slices of the basal nucleus of Meynert. Neuroscience 102, 129–138 (2001).

    Article  CAS  Google Scholar 

  39. B.S. Elkin, E.U. Azeloglu, K.D. Costa, and B. Morrison III: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24, 812–822 (2007).

    Article  Google Scholar 

  40. N. Bouchonville, M. Meyer, C. Gaude, E. Gay, D. Ratel, and A. Nicolas: AFM mapping of the elastic properties of brain tissue reveals kPa mm(−1) gradients of rigidity. Soft Mat. 12, 6232–6239 (2016).

    Article  CAS  Google Scholar 

  41. E. Moeendarbary, I.P. Weber, G.K. Sheridan, D.E. Koser, S. Soleman, B. Haenzi, E.J. Bradbury, J. Fawcett, and K. Franze: The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017).

    Article  CAS  Google Scholar 

  42. N.D. Leipzig and M.S. Shoichet. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867–6878 (2009).

    Article  CAS  Google Scholar 

  43. P. Moshayedi, G. Ng, J.C. Kwok, G.S. Yeo, C.E. Bryant, J.W. Fawcett, K. Franze, and J. Guck: The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    Article  CAS  Google Scholar 

  44. B.M. Baker and C.S. Chen: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  45. M. Caralt, J.S. Uzarski, S. Iacob, K.P. Obergfell, N. Berg, B.M. Bijonowski, K.M. Kiefer, H.H. Ward, A. Wandinger-Ness, W.M. Miller, and Z.J. Zhang: Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am. J. Transpl. 15, 64–75 (2015).

    Article  CAS  Google Scholar 

  46. A.J. Mellott, H.E. Shinogle, J.G. Nelson-Brantley, M.S. Detamore, and H. Staecker: Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res. Ther. 8, 41 (2017).

    Article  Google Scholar 

  47. J. De Waele, K. Reekmans, J. Daans, H. Goossens, Z. Berneman, and P. Ponsaerts: 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41, 122–131 (2015).

    Article  Google Scholar 

  48. D. Sood, K. Chwalek, E. Stuntz, D. Pouli, C. Du, M. Tang-Schomer, I. Georgakoudi, L.D. Black III, and D.L. Kaplan: Fetal brain extracellular matrix boosts neuronal network formation in 3d bioengineered model of cortical brain tissue. ACS Biomater. Sci. Eng. 2, 131–140 (2015).

    Article  Google Scholar 

  49. A. Faissner and J. Reinhard: The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 63, 1330–1349 (2015).

    Article  Google Scholar 

  50. Temple S.: The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  51. K. Watanabe, D. Kamiya, A. Nishiyama, T. Katayama, S. Nozaki, H. Kawasaki, Y. Watanabe, K. Mizuseki, and Y. Sasai: Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    Article  CAS  Google Scholar 

  52. M. Eiraku, K. Watanabe, M. Matsuo-Takasaki, M. Kawada, S. Yonemura, M. Matsumura, T. Wataya, A. Nishiyama, K. Muguruma, and Y. Sasai: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  53. A.M. Maroof, S. Keros, J.A. Tyson, S.W. Ying, Y.M. Ganat, F.T. Merkle, B. Liu, A. Goulburn, E.G. Stanley, A.G. Elefanty, and H.R. Widmer: Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559–572 (2013).

    Article  CAS  Google Scholar 

  54. J. Mariani, M.V. Simonini, D. Palejev, L. Tomasini, G. Coppola, A.M. Szekely, T.L. Horvath, and F.M. Vaccarino: Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109, 12770–12775 (2012).

    Article  CAS  Google Scholar 

  55. M.A. Lancaster, M. Renner, C.A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, and J.A. Knoblich: Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  Google Scholar 

  56. A.M. Paşca, S.A. Sloan, L.E. Clarke, Y. Tian, C.D. Makinson, N. Huber, C.H. Kim, J.Y. Park, N.A. O’rourke, K.D. Nguyen, and S.J. Smith: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article  Google Scholar 

  57. R. Mallinger, W. Kulnig, and P. Böck: Symmetrically banded collagen fibrils: observations on a new cross striation pattern in vivo. Anat. Rec. 232, 45–51 (1992).

    Article  CAS  Google Scholar 

  58. K. Poole, K. Khairy, J. Friedrichs, C. Franz, D.A. Cisneros, J. Howard, and D. Mueller: Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J. Mol. Biol. 349, 380–386 (2005).

    Article  CAS  Google Scholar 

  59. I. Patla, T. Volberg, N. Elad, V. Hirschfeld-Warneken, C. Grashoff, R. Fässler, J.P. Spatz, B. Geiger, and O. Medalia: Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat. Cell Biol. 12, 909–915 (2010).

    Article  CAS  Google Scholar 

  60. M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, and J.P. Spatz: Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5, 383–388 (2004).

    Article  CAS  Google Scholar 

  61. X. Wang, K. Ye, Z. Li, C. Yan, and J. Ding: Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 9, 280–286 (2013).

    Article  Google Scholar 

  62. M. Cavallini, C. Albonetti, and F. Biscarini: Nanopatterning soluble multifunctional materials by unconventional wet lithography. Adv. Mater. 21, 1043–1053 (2009).

    Article  CAS  Google Scholar 

  63. B. Chelli, M. Barbalinardo, F. Valle, P. Greco, E. Bystrenova, M. Bianchi, and F. Biscarini: Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus 4, 20130041 (2014).

    Article  Google Scholar 

  64. S.L. Hirsh, D.R. McKenzie, N.J. Nosworthy, J.A. Denman, O.U. Sezerman, and M.M. Bilek: The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B: Biointerfaces 103, 395–404 (2013).

    Article  CAS  Google Scholar 

  65. P. Roach, D. Farrar, and C.C. Perry: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005).

    Article  CAS  Google Scholar 

  66. F. Morin, N. Nishimura, L. Griscom, B. LePioufle, H. Fujita, Y. Takamura, and E. Tamiya: Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron. 21, 1093–1100 (2006).

    Article  CAS  Google Scholar 

  67. R. Renault, N. Sukenik, S. Descroix, L. Malaquin, J.L. Viovy, J.M. Peyrin, S. Bottani, P. Monceau, E. Moses, and M. Vignes: Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS ONE 10, e0120680 (2015).

    Article  Google Scholar 

  68. L. Pan, S. Alagapan, E. Franca, S.S. Leondopulos, T.B. DeMarse, G.J. Brewer, and B.C. Wheeler: An in vitro method to manipulate the direction and functional strength between neural populations. Front. Neural Circuits 9, 32 (2015).

    Article  Google Scholar 

  69. M.E.J. Obien, K. Deligkaris, T. Bullmann, D.J. Bakkum, and U. Frey: Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8, 423 (2015).

    Article  Google Scholar 

  70. C. Grienberger and A. Konnerth: Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  Google Scholar 

  71. J. Groothuis, N.F. Ramsey, G.M. Ramakers, and G. van der Plasse: Physiological challenges for intracortical electrodes. Brain Stimul. 7, 1–6 (2014).

    Article  Google Scholar 

  72. S. Van Vlierberghe, P. Dubruel, and E. Schacht: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 1387–1408 (2011).

    Article  Google Scholar 

  73. J. Thiele, Y. Ma, S. Bruekers, S. Ma, and W.T. Huck: Designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26, 125–148 (2014).

    Article  CAS  Google Scholar 

  74. A.S. Hoffman: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).

    Article  Google Scholar 

  75. M.K. Lee, M.H. Rich, K. Baek, J. Lee, and H. Kong: Bioinspired tuning of hydrogel permeability-rigidity dependency for 3D cell culture. Sci. Rep. 5, 8948 (2015).

    Article  CAS  Google Scholar 

  76. S. Khetan, C. Chung, and J.A. Burdick: Tuning hydrogel properties for applications in tissue engineering. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. In Annu. Int. Conf. IEEE (2094–2096). IEEE (2009).

    Google Scholar 

  77. L.S. Wang, J.E. Chung, P.P.Y. Chan, and M. Kurisawa: Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31, 1148–1157 (2009).

    Article  Google Scholar 

  78. A.M. Kloxin, A.M. Kasko, C.N. Salinas, and K.S. Anseth: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

  79. D. Pasqui, M. De Cagna, and R. Barbucci: Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4, 1517–1534 (2012).

    Article  Google Scholar 

  80. M.W. Tibbitt and K.S. Anseth: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  Google Scholar 

  81. M. Plessner, M. Melak, P. Chinchilla, C. Baarlink, and R. Grosse: Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 11209–11216 (2015).

    Article  CAS  Google Scholar 

  82. K.J. Lampe, A.L. Antaris, and S.C. Heilshorn: Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomater. 9, 5590–5599 (2013).

    Article  CAS  Google Scholar 

  83. E.J. Berns, Z. Álvarez, J.E. Goldberger, J. Boekhoven, J.A. Kessler, H.G. Kuhn, and S.I. Stu: A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells. Acta Biomater. 37, 50–58 (2016).

    Article  CAS  Google Scholar 

  84. J.T. Koivist, T. Joki, J.E. Parraga, R. Pääkkönen, L. Ylä-Outinen, L. Salonen, I. Jönkkäri, M. Peltola, T.O. Ihalainen, and S. Narkilahti: Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed. Mater. 12(2), 025014 (2017).

    Article  Google Scholar 

  85. T.R. Ham, M. Farrag, and N.D. Leipzig: Covalent growth factor tethering to direct neural stem cell differentiation and self-organization. Acta Biomater. 53, 140–151 (2017).

    Article  CAS  Google Scholar 

  86. Z. Zhang, B.C. Freitas, H. Qian, J. Lux, A. Acab, C.A. Trujillo, R.H. Herai, V.A.N. Huu, J.H. Wen, S. Joshi-Barr, J.V. Karpiak, A.J. Engler, X. Fu, A.R. Muotri, and A. Almutairi: Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl. Acad. Sci. USA 113, 3185–3190 (2016).

    Article  CAS  Google Scholar 

  87. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna: Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610 (2005).

    Article  CAS  Google Scholar 

  88. N.J. Schaub, C.D. Johnson, B. Cooper, and R.J. Gilbert: Electrospun fibers for spinal cord injury research and regeneration. J. Neurotrauma 33, 1405–1415 (2016).

    Article  Google Scholar 

  89. V. Cirillo, V. Guarino, M.A. Alvarez-Perez, M. Marrese, and L. Ambrosio: Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance. J. Mater. Sci., Mater. Med. 25(10), 2323–2332 (2014).

    Article  CAS  Google Scholar 

  90. J. Xie, W. Liu, M.R. MacEwan, P.C. Bridgman, and Y. Xia: Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8(2), 1878–1885 (2014).

    Article  CAS  Google Scholar 

  91. P. Roach, T. Parker, N. Gadegaard, and M.R. Alexander: A bio-inspired neural environment to control neurons comprising radial glia, substrate chemistry and topography. Biomater. Sci. 1, 83–93 (2013).

    Article  CAS  Google Scholar 

  92. D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz: Axon physiology. Physiol. Rev. 91, 555–602 (2011).

    Article  CAS  Google Scholar 

  93. P.K. Mattila and P. Lappalainen: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008).

    Article  CAS  Google Scholar 

  94. M.F. Daud, K.C. Pawar, F. Claeyssens, A.J. Ryan, and J.W. Haycock: An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 5901–5913 (2012).

    Article  CAS  Google Scholar 

  95. J. Qu, D. Wang, H. Wang, Y. Dong, F. Zhang, B. Zuo, and H. Zhang: Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J. Biomed. Mater. Res. A 101, 2667–2678 (2013).

    Article  Google Scholar 

  96. H.B. Wang, M.E. Mullins, J.M. Cregg, C.W. McCarthy, and R.J. Gilbert: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978 (2010).

    Article  CAS  Google Scholar 

  97. L. He, S. Liao, D. Quan, K. Ma, C. Chan, S. Ramakrishna, and J. Lu: Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17. 2 stem cells. Acta Biomater. 6, 2960–2969 (2010).

    Article  CAS  Google Scholar 

  98. J. Wang, R. Ye, Y. Wei, H. Wang, X. Xu, F. Zhang, J. Qu, B. Zuo, and H. Zhang: The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J. Biomed. Mater. Res. A 100, 632–645 (2011).

    Google Scholar 

  99. G.T. Christopherson, H. Song, and H.Q. Mao: The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556–564 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to thank the UK EPRSC for support with funding via the centre for doctoral training in regenerative medicine (EP/L015072/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Roach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merryweather, D., Roach, P. The need for advanced three-dimensional neural models and developing enabling technologies. MRS Communications 7, 309–319 (2017). https://doi.org/10.1557/mrc.2017.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.50

Navigation