Skip to main content
Log in

Evidence of electric-field-accelerated growth of tin whiskers

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This paper presents experimental results supporting a theory that electric fields accelerate the growth of tin (Sn) whiskers. We have rapidly (within one week) grown long (≈100 urn) and dense (≈300 mrrr2) whiskers on thin Sn films. Humidity and an applied electric field are found to have a strong effect when applied together, making whiskers orders of magnitude longer and denser. An evidence of explosive whisker development is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Table II
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G.T. Galyon: Annotated tin whisker bibliography and anthology. IEEE Trans. Electron. Packag. Manuf. 28, 94 (2005). http://thor.inemi.org/webdownload/newsroom/TW_,biblio-July03.pdf

    Article  CAS  Google Scholar 

  2. J. Brusse, G. Ewell, and J. Siplon: In Tin Whiskers: Attributes and Mitigation, Capacitor and Resistor Technology Symp. (CARTS), (New Orleans, LA) March 25-29, (2002), pp. 68–80.

    Google Scholar 

  3. G. Davy: Private communication, October 2014; quoted in V.G. Karpov: Electrostatic mechanism of nucleation and growth of metal whiskers. SMT Magazine, February 2015, p. 28. http://iconnect007.uberflip.com/i/455818/44

    Google Scholar 

  4. Y. Zhang: Tin whisker discovery and research. In Soldering in Electronics, edited by K. Suganuma (Marcel Dekker, Inc., New York, 2004), p. 121.

    Google Scholar 

  5. K.N. Tu, J.O. Suh, and A.T. Wu: Tin whisker growth on lead-free solder finishes. In Lead-Free Solder Interconnect Reliability, edited by D. Shangguan (ASM International, Materials Park, Ohio, 2005), p. 851.

    Google Scholar 

  6. D. Bunyan, M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, and C. Liu: Tin whisker growth from electroplated finishes a review. Trans. Inst. Met. Finish. 91, 249–259 (2013).

    Article  CAS  Google Scholar 

  7. NASA Goddard Space Flight Center Tin Whisker Homepage. http://nepp.nasa.gov/whisker. Bibliography for Tin Whiskers, Zinc Whiskers, Cadmium Whiskers, Indium Whiskers, and Other Conductive Metal and Semiconductor Whiskers, John R. Barnes, http://www.dbicorporation.com/whiskbib.htm

  8. I. Amato: Tin whiskers: the next Y2K problem? Fortune Mag. 151, 27 (2005). http://archive.fortune.com/magazines/fortune/fortune_archive/2005/01/10/8230971/index.htm

    Google Scholar 

  9. V.G. Karpov: Electrostatic theory of metal whiskers. Phys. Rev. Appl. 1, 044001 (2014).

    Article  Google Scholar 

  10. V.G. Karpov: Electrostatic mechanism of nucleation and growth of metal whiskers. SMT Magazine, February 2015, p. 28. http://iconnect007.uber-flip.com/i/455818/44

    Google Scholar 

  11. S.H. Liu, C. Chen, P.C. Liu, and T. Chou: Tin whisker growth driven by electrical currents. J. Appl. Phys. 95, 7742 (2004).

    Article  CAS  Google Scholar 

  12. E.R. Crandall: Factors governing thin whisker growth. Ph.D. Thesis, Auburn, Alabama, 2012. http://ldfcoatings.com/articles/ErikaCrandall.pdf

    Google Scholar 

  13. R.D. Hilty, N. Corman, and H. Herrmann: Electrostatic fields and current-flow impact on whisker growth. IEEE Trans. Elec. Packag. Manuf. 28, 75–81 (2005).

    Article  CAS  Google Scholar 

  14. M.A. Ashworth, G.D. Wilcox, R.L. Higginson, R.J. Heath, and C. Liu: Effect of direct current and pulse plating parameters on tin whisker growth from tin electrodeposits on copper and brass substrates. Trans. Inst. Met. Finish. 91, 260–268 (2013).

    Article  CAS  Google Scholar 

  15. T. Fang, M. Osterman, and M. Pecht: Statistical analysis of tin whisker growth. Microelectron. Reliab. 46, 846 (2006).

    Article  CAS  Google Scholar 

  16. L. Panashchenko: Evaluation of environmental tests for tin whisker assessment. MS Thesis, University of Maryland, 2009. http://hdl.handle.net/1903/10021

    Google Scholar 

  17. D. Susan, J. Michael, R.P. Grant, B. McKenzie, and W.G. Yelton: Morphology and growth kinetics of straight and kinked tin whiskers. Metal. Mater. Trans. A 44, 1485 (2013).

    Article  CAS  Google Scholar 

  18. M. Mason and G. Eng: Understanding tin plasmas: a new approach to tin whisker plasma risk assessment. In IEEE IRPS, U.Md. CALCE, April 2007. https://nepp.nasa.gov/whisker/reference/tech_papers/2007-Eng-tin-plasma.pdf

    Google Scholar 

Download references

Acknowledgments

Microscopy for this study was done with equipment at the Center for Materials and Sensor Characterization center at the University of Toledo. We acknowledge A. D. Compaan for the deposition facilities and D. Strickler for the Pilkington TEC15-brand glass substrates. The financial support for this work was provided by NRC award No. NRC-HQ-12-G-38-0042 and NSF award No. 1066749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Karpov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasko, A.C., Grice, C.R., Kostic, A.D. et al. Evidence of electric-field-accelerated growth of tin whiskers. MRS Communications 5, 619–622 (2015). https://doi.org/10.1557/mrc.2015.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.64

Navigation