Skip to main content

Advertisement

Log in

Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li-S batteries

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Poly[sulfur-random-1,3-diisopropenylbenzene (DIB)] copolymers synthesized via inverse vulcanization form electrochemically active polymers used as cathodes for high-energy density Li-S batteries, capable of enhanced capacity retention (1005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. In this prospective, we demonstrate how analytical electron microscopy can be employed as a powerful tool to explore the origins of the enhanced capacity retention. We analyze morphological and compositional features when the copolymers, with DIB contents up to 50% by mass, are blended with carbon nanoparticles. Replacing the elemental sulfur with the copolymers improves the compatibility and interfacial contact between active sulfur compounds and conductive carbons. There also appears to be improvements of the cathode mechanical stability that leads to less cracking but preserving porosity. This compatibilization scheme through stabilized organosulfur copolymers represents an alternative strategy to the nanoscale encapsulation schemes which are often used to improve the cycle life in high-energy density Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.-M. Tarascon: Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19 (2012).

    Article  CAS  Google Scholar 

  2. BBC News Science & Environment: Eternal’ solar plane’s records are confirmed, 24 December 2010, http://www.bbc.co.uk/news/science-environment-12074162

  3. V.P. Oleshko, C. Scordilis-Kelley, A. Xiao, J. Affinito, Y. Talyossef, R. Elazari, Y. Grinblat, and D. Aurbach: Characterization of advanced high-energy density Li-S batteries by FEAEM, SEM/EDS X-ray spectral imaging and feature sizing/chemical typing techniques. Microsc. Microanal. 15, 1398 (2009).

    Article  Google Scholar 

  4. X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat. Mater. 8, 500 (2009).

    Article  CAS  Google Scholar 

  5. X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer, and J. Liu: Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem. 21, 16603 (2011).

    Article  CAS  Google Scholar 

  6. X. Ji, S. Evers, R. Black, and L.F. Nazar: Stabilizing lithium-sulfur cathodes using polysulfide reservoirs. Nat. Commun. 2, 325 (2011).

    Article  Google Scholar 

  7. N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, and L.A. Archer: Porous hollow carbon @ sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed., 50, 5904 (2011).

    Article  CAS  Google Scholar 

  8. R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach: Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641 (2011).

    Article  CAS  Google Scholar 

  9. L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, and Y. Zhang: Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4, 5053 (2011).

    Article  CAS  Google Scholar 

  10. C. Liang, N.J. Dudney, and J.Y. Howe: Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 21, 4724 (2009).

    Article  CAS  Google Scholar 

  11. J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, and L.F. Nazar: Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 3591 (2012).

    Article  CAS  Google Scholar 

  12. R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Ferey, and J.-M. Tarascon: Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154 (2011).

    Article  CAS  Google Scholar 

  13. Y. Cao, X. Li, I.A. Aksay, J. Lemmon, Z. Nie, Z. Yang, and J. Liu: Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. J. Phys. Chem. Chem. Phys. 13, 7660 (2011).

    Article  CAS  Google Scholar 

  14. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, and Y. Zhang: Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522 (2011).

    Article  CAS  Google Scholar 

  15. Y. Yang, M.T. McDowell, A. Jackson, J.J. Cha, S.S. Hong, and Y. Cui: New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486 (2010).

    Article  CAS  Google Scholar 

  16. F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, and T. Zhao: Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).

    Article  CAS  Google Scholar 

  17. J. Wang, J. Yang, C. Wan, K. Du, J. Xie, and N. Xu: Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 13, 487 (2003).

    Article  CAS  Google Scholar 

  18. C.A. Scordilis-Kelley, Y. Mikhaylik, I. Kovalev, V.P. Oleshko, C. Campbell, and J.D. Affinito: Electrochemical cells comprising porous structures comprising sulfur Int. Patent Appl. No. WO 2011/031297 A2, filed by Sion Power Corp. 08. 28. 2009; published 03. 17. 2011.

    Google Scholar 

  19. Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, and Y. Cui: Sulfur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulfur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

  20. W. Li, G. Zheng, Y. Yang, Z.H. Seh, N. Liu, and Y. Cui: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. USA 110, 7148 (2013).

    Article  CAS  Google Scholar 

  21. M.L. Liu, S.J. Visco, and L.C. Dejonghe: Novel solid redox polymerization electrodes. All-solid-state, thin-film, rechargeable lithium batteries. J. Electrochem. Soc. 138, 1891 (1991).

    Article  CAS  Google Scholar 

  22. M.L. Liu, S.J. Visco, and L.C. Dejonghe: Novel solid redox polymerization electrodes. Electrochemical properties. J. Electrochem. Soc. 138, 1896 (1991).

    Article  CAS  Google Scholar 

  23. Z.S. Chao, Z. Lan, and J. Yu: Preparation and electrochemical properties of polysulfide polypyrrole. J. Power Sources 196, 10263 (2011).

    Article  Google Scholar 

  24. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, and J. Liu: A soft approach to encapsulate sulfur. Adv. Mater. 24, 1176 (2012).

    Article  CAS  Google Scholar 

  25. Y. Yang, G. Zheng, S. Misra, J. Nelson, M.F. Toney, and Y. Cui: High-capacity micrometer-sized Li2S particles as cathode materials. J. Am. Chem. Soc. 134, 15387 (2012).

    Article  CAS  Google Scholar 

  26. H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J.J. Cha, W. Li, Z.W. Seh, M.T. McDowell, K. Yan, Z. Liang, V.K. Narasihman, and Y. Cui: Improving lithium-sulfur batteries through spatial control of sulfur species deposition on a hybrid electrode surface. Nat. Commun. 5, 3943 (2014).

    Article  CAS  Google Scholar 

  27. J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H.T. Grossmann, P. Strubel, H. Althues, S. Spange, and S. Kaskel: Carbon- based anodes for lithium sulfur full cells with high cycle stability. Adv. Funct. Mater. 24, 1284 (2013).

    Article  Google Scholar 

  28. A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, and M. Tatsumisago: All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 5, 701 (2003).

    Article  CAS  Google Scholar 

  29. J. Hassoun and B. Scrosati: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371 (2010).

    Article  CAS  Google Scholar 

  30. J. Hassoun and B. Scrosati: Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198 (2010).

    Article  CAS  Google Scholar 

  31. J. Hassoun, Y.-K. Sun, and B. Scrosati: Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J. Power Sources 196, 343 (2011).

    Article  CAS  Google Scholar 

  32. J. Hassoun, J. Kim, D.-J. Lee, H.-G. Jung, S.-M. Lee, Y.-K. Sun, and B. Scrosati: A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon-sulfur battery. J. Power Sources 202, 308 (2012).

    Article  CAS  Google Scholar 

  33. W.-J. Chung, J.J. Griebel, E.-T. Kim, H.-S. Yoon, A.G. Simmonds, H.-J. Ji, P.T. Dirlam, R.S. Glass, J.J. Wie, N.A. Nguyen, B.W. Guralnick, J. Park, A. Somogyi, P. Theato, M.E. Mackay, Y.-E. Sung, K.-C. Char, and J. Pyun: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).

    Article  CAS  Google Scholar 

  34. A.G. Simmonds, J.J. Griebel, J. Park, K.R. Kim, W.J. Chung, V.P. Oleshko, J. Kim, E.T. Kim, R.S. Glass, C.L. Soles, Y.-E. Sung, K. Char, J. Pyun: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries. ACS Macro Lett. 3, 229 (2014).

    Article  CAS  Google Scholar 

  35. J.J. Griebel, G. Li, R.S. Glass, K. Char, and J. Pyun: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J. Polym. Sci. A, Polym. Chem. 53, 173 (2015).

    Article  CAS  Google Scholar 

  36. T. Tatsuma, T. Sotomura, T. Sato, D.A. Buttry, and N. Oyama: Dimercaptan-polyaniline cathodes for lithium batteries: addition of a polypyrrole derivative for rapid charging. J. Electrochem. Soc. 142, L182 (1995).

    Article  CAS  Google Scholar 

  37. Y. Kiya, J.C. Henderson, and H.D. Abruna: 4-Amino-4H-1,2,4-triazole-3,5-dithiol a modifiable organosulfur compound as a high-energy cathode for lithium-ion rechargeable batteries. J. Electrochem. Soc. 154, A844 (2007).

    Article  CAS  Google Scholar 

  38. J.J. Griebel, S. Namnabat, E.-T. Kim, R. Himmbelhuber, D.H. Moronta, W.J. Chung, A.G. Simmonds, N. Ngyugen, M.E. Mackay, K. Char, R.S. Glass, R.A. Norwood, and J. Pyun: New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv. Mater. 26, 3014 (2014).

    Article  CAS  Google Scholar 

  39. R.F. Egerton: Electron Energy-Loss Spectroscpoy in the Electron Microscope, 3rd ed. (Springer, NY, 2011), pp. 197–202.

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the ACS-PRF (51026-ND10), the NSF (CHE-1305773), the WCU Program through the NRF of Korea funded by the Ministry of Education, Science and Technology (R31-10013) for support of this work. V.P.O. acknowledges the support by National Institute of Standards and Technology (Award No 70NANB12H164). K.C. acknowledges the support from NRF for the National Creative Research Initiative Center for Intelligent Hybrids (2010-0018290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Oleshko.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.41

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleshko, V.P., Kim, J., Schaefer, J.L. et al. Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li-S batteries. MRS Communications 5, 353–364 (2015). https://doi.org/10.1557/mrc.2015.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.41

Navigation