Skip to main content
Log in

Beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films during transmission electron microscopy

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report that an electron beam focused for high-resolution imaging rapidly initiates observable crystallization of amorphous Me–Si–C films. For 200-keV electron irradiation of Nb–Si–C and Zr–Si–C films, crystallization is observed at doses of ∼2.8 × 109 and ∼4.7 × 109 e−/nm2, respectively. The crystallization process is driven by atomic displacement events, rather than heating from the electron beam as in situ annealing (400–600 °C) retains the amorphous state. Our findings demand a critical analysis of alleged amorphous and nanocrystalline ceramics including reassessing previous reports on nanocrystalline Me–Si–C films for possible electron-beam-induced crystallization effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).

    Article  CAS  Google Scholar 

  2. L.W. Hobbs, F.W. Clinard Jr., S.J. Zinkle, and R.C. Ewing: Radiation effects in ceramics. J. Nucl. Mater. 216, 291 (1994).

    Article  CAS  Google Scholar 

  3. I.T. Bae, M. Ishimaru, and Y. Hirotsu: Structural changes of SiC under electron-beam irradiation: temperature dependence. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 315 (2006).

    Article  CAS  Google Scholar 

  4. M. McCartney, P. Crozier, J. Weiss, and D.J. Smith: Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42, 301 (1991).

    Article  CAS  Google Scholar 

  5. I. Jencic, M.W. Bench, I.M. Robertson, and M.A. Kirk: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).

    Article  CAS  Google Scholar 

  6. T. Nagase, T. Sanda, A. Nino, W. Qin, H. Yasuda, H. Mori, Y. Umakoshi, and J.A. Szpunar: MeV electron irradiation induced crystallization in metallic glasses: atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. J. Non-Cryst. Solids 358, 502 (2012).

    Article  CAS  Google Scholar 

  7. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009), pp. 64–68.

    Book  Google Scholar 

  8. D. Martínez-Martínez, C. López-Cartes, A. Fernández, and J.C. Sánchez-López: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 1662 (2009).

    Article  Google Scholar 

  9. N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund, L. Hultman, and U. Jansson: Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Technol. 206, 354 (2011).

    Article  CAS  Google Scholar 

  10. T. Zehnder, J. Matthey, P. Schwaller, A. Klein, P.A. Steinmann, and J. Patscheider: Wear protective coatings consisting of TiC-SiC-a-C: H deposited by magnetron sputtering. Surf. Coat. Technol. 163–164, 238 (2003).

    Article  Google Scholar 

  11. P. Eklund, J. Emmerlich, H. Högberg, O. Wilhelmsson, P. Isberg, J. Birch, P.O. Å Persson, U. Jansson, and L. Hultman: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486 (2005).

    Article  CAS  Google Scholar 

  12. P. Eklund: Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406 (2007).

    Article  CAS  Google Scholar 

  13. C. Lopes, N.M.G. Parreira, S. Carvalho, A. Cavaleiro, J.P. Rivière, E. Le Bourhis, and F. Vaz: Magnetron sputtered Ti-Si-C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180 (2007).

    Article  CAS  Google Scholar 

  14. J. Lauridsen, P. Eklund, T. Joelsson, H. Ljungcrantz, Å. Öberg, E. Lewin, U. Jansson, M. Beckers, H. Högberg, and L. Hultman: High-rate deposition of amorphous and nanocomposite Ti-Si-C multifunctional coatings. Surf. Coat. Technol. 205, 299 (2010).

    Article  CAS  Google Scholar 

  15. M. Naka, H. Sakai, M. Maeda, and H. Mori: Formation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng., A 226–228, 774 (1997).

    Article  Google Scholar 

  16. K. Kádas, M. Andersson, E. Holmström, H. Wende, O. Karis, S. Urbonaite, S.M. Butorin, S. Nikitenko, K.O. Kvashnina, U. Jansson, and O. Eriksson: Structural properties of amorphous metal carbides: theory and experiment. Acta Mater. 60, 4720 (2012).

    Article  Google Scholar 

  17. J.E. Krzanowski and J. Wormwood: Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films: compositional routes for film densification and hardness enhancement. Surf. Coat. Technol. 201, 2942 (2006).

    Article  CAS  Google Scholar 

  18. J.L. Endrino and J.E. Krzanowski: Nanostructure and mechanical properties of WC-SiC thin films. J. Mater. Res. 17, 3163 (2002).

    Article  CAS  Google Scholar 

  19. N. Nedfors, O. Tengstrand, A. Flink, P. Eklund, L. Hultman, and U. Jansson: Multifunctional amorphous and nanocomposite Nb-Si-C coatings deposited by DC magnetron sputtering. Thin Solid Films. DOI:10.1016/j.tsf.2013.08.066.

  20. M. Andersson, S. Urbonaite, E. Lewin, and U. Jansson: Magnetron sputtering of Zr-Si-C thin films. Thin Solid Films 520, 6375 (2012).

    Article  CAS  Google Scholar 

  21. E. Lewin, M. Gorgoi, F. Schäfers, S. Svensson, and U. Jansson: Influence of sputter damage on the XPS analysis of metastable nanocomposite coatings. Surf. Coat. Technol. 204, 455 (2009).

    Article  CAS  Google Scholar 

  22. S.D. Walck and J.P. McCaffrey: The small angle cleavage technique applied to coatings and thin films. Thin Solid Films 308–309, 399 (1997).

    Article  Google Scholar 

  23. J.P. McCaffrey: Small-angle cleavage of semiconductors for transmission electron microscopy. Ultramicroscopy 38, 149 (1991).

    Article  Google Scholar 

  24. A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    Article  CAS  Google Scholar 

  25. L.W. Hobbs: Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed within the VINNEX Center FunMat supported by The Swedish Agency for Innovation Systems (VINNOVA). The Knut and Alice Wallenberg Foundation is acknowledged for funding the electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olof Tengstrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tengstrand, O., Nedfors, N., Andersson, M. et al. Beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films during transmission electron microscopy. MRS Communications 3, 151–155 (2013). https://doi.org/10.1557/mrc.2013.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.31

Navigation