Skip to main content
Log in

Governing role of the ratio of large platelet particles to ultrafine particles on dynamic and quasistatic compressive response and damage evolution in ice-templated alumina ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study revealed that the mass ratio of large anisometric particles (platelets) to ultrafine, equiaxed particles strongly influences dynamic and quasistatic compressive response and the process of damage evolution in ice-templated alumina materials. The improved sinterability between particles of significantly dissimilar size and morphology enabled the utilization of a high mass ratio of the particles in harnessing a markedly enhanced level of strength in highly porous ice-templated ceramics. The high volume fraction of platelets increased lamellar bridge density and resulted in dendritic morphology as opposed to lamellar morphology without platelets. All the materials showed strain rate-sensitivity, where strength increased with strain rate. Materials with highly dendritic morphology exhibited the best performance in terms of maximum strength and energy absorption capacity, and the performance improved from quasistatic to dynamic regime. Direct observation of the process of damage evolution revealed the effects of both strain rate and ratio of platelets to ultrafine particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. K.L. Scotti and D.C. Dunand: Freeze casting–a review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 94, 243 (2018).

    Article  CAS  Google Scholar 

  2. G. Shao, D.A.H. Hanaor, X. Shen, and A. Gurlo: Freeze casting: From low-dimensional building blocks to aligned porous structures–a review of novel materials, methods, and applications. Adv. Mater. 32, 1907176 (2020).

    Article  CAS  Google Scholar 

  3. M. Naviroj, P.W. Voorhees, and K.T. Faber: Suspension- and solution-based freeze casting for porous ceramics. J. Mater. Res. 32, 3203 (2017).

    Article  CAS  Google Scholar 

  4. S. Deville: Ice-templating, freeze casting: Beyond materials processing. J. Mater. Res. 28, 2202 (2013).

    Article  CAS  Google Scholar 

  5. F. Bouville, E. Maire, and S. Deville: Lightweight and stiff cellular ceramic structures by ice templating. J. Mater. Res. 29, 175 (2014).

    Article  CAS  Google Scholar 

  6. I. Nelson and S.E. Naleway: Intrinsic and extrinsic control of freeze casting. J. Mater. Res. Technol. 8, 2372 (2019).

    Article  Google Scholar 

  7. D. Ghosh, H. Kang, M. Banda, and V. Kamaha: Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Mater. 125, 1 (2017).

    Article  CAS  Google Scholar 

  8. D. Ghosh, N. Dhavale, M. Banda, and H. Kang: A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceram. Int. 42, 16138 (2016).

    Article  CAS  Google Scholar 

  9. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515 (2006).

    Article  CAS  Google Scholar 

  10. A. Lichtner, D. Roussel, D. Jauffrès, C.L. Martin, and R.K. Bordia: Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. J. Am. Ceram. Soc. 99, 979 (2016).

    Article  CAS  Google Scholar 

  11. S. Akurati, D. Ghosh, M. Banda, and D. Terrones: Direct observation of failure in ice-templated ceramics under dynamic and quasistatic compressive loading conditions. J. Dyn. Behav. Mater. 5, 463 (2019).

    Article  Google Scholar 

  12. M. Banda and D. Ghosh: Effects of porosity and strain rate on the uniaxial compressive response of ice-templated sintered macroporous alumina. Acta Mater. 149, 179 (2018).

    Article  CAS  Google Scholar 

  13. R. Parai, T. Walters, J. Marin, S. Pagola, G.M. Koenig Jr., and D. Ghosh: Strength enhancement in ice-templated lithium titanate Li4Ti5O12 materials using sucrose. Materialia 14, 100901 (2020).

    Article  CAS  Google Scholar 

  14. S. Akurati, J. Marin, B. Gundrati, and D. Ghosh: Assessing the role of loading direction on the uniaxial compressive response of multilayered ice-templated alumina-epoxy composites. Materialia 14, 100895 (2020).

    Article  CAS  Google Scholar 

  15. M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, and J. McKittrick: Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv. Funct. Mater. 24, 1978 (2014).

    Article  CAS  Google Scholar 

  16. D. Ghosh, M. Banda, H. Kang, and N. Dhavale: Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scr. Mater. 125, 29 (2016).

    Article  CAS  Google Scholar 

  17. I. Ozer, E. Suvaci, B. Karademir, J. Missiaen, C. Carry, and D. Bouvard: Anisotropic sintering shrinkage in alumina ceramics containing oriented platelets. J. Am. Ceram. Soc. 89, 1972 (2006).

    Article  CAS  Google Scholar 

  18. R.C. Bradt, D. Hasselman, D. Munz, M. Sakai, and V.Y. Shevchenko: Fracture Mechanics of Ceramics (Springer Science & Business Media, Inc., New York, NY, 2005).

    Book  Google Scholar 

  19. J. Lankford: Mechanisms responsible for strain-rate-dependent compressive strength in ceramic materials. J. Am. Ceram. Soc. 64, C–33 (1981).

    Article  Google Scholar 

  20. J. Lankford, W. Predebon, J. Staehler, G. Subhash, B. Pletka, and C. Anderson: The role of plasticity as a limiting factor in the compressive failure of high strength ceramics. Mech. Mater. 29, 205 (1998).

    Article  Google Scholar 

  21. D. Ghosh, M. Banda, J.E. John, and D.A. Terrones: Dynamic strength enhancement and strain rate sensitivity in ice-templated ceramics processed with and without anisometric particles. Scr. Mater. 154, 236 (2018).

    Article  CAS  Google Scholar 

  22. R. Asthana and S.N. Tewari: Review–the engulfment of foreign particles by a freezing interface. J. Mater. Sci. 28, 5414 (1993).

    Article  CAS  Google Scholar 

  23. C. Körber and G. Rau: Interaction of particles and a moving ice-liquid interface. J. Crys. Growth 72, 649 (1985).

    Article  Google Scholar 

  24. V. Naglieri, H.A. Bale, B. Gludovatz, A.P. Tomsia, and R.O. Ritchie: On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Mater. 61, 6948 (2013).

    Article  CAS  Google Scholar 

  25. M. Banda and D. Ghosh: Effects of temperature and platelets on lamella wall microstructure, structural stability, and compressive strength in ice-templated ceramics. Materialia 9, 100537 (2020).

    Article  CAS  Google Scholar 

  26. G. Ravichandran and G. Subhash: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J. Am. Ceram. Soc 77, 263 (1994).

    Article  CAS  Google Scholar 

  27. G. Subhash and G. Ravichandran: Split-Hopkinson pressure bar testing of ceramics. In ASM Handbook Volume 8–Mechanical Testing and Evaluation (ASM International, Materials Park, OH, 2000); pp. 497.

    Google Scholar 

  28. L. Li, Z. Li, X. Li, X. Xu, A. Guo, J. Liu, and H. Du: Influence of fibers on the microstructure and compressive response of directional ice-templated alumina ceramics. J. Eur. Ceram 38, 3595 (2018).

    Article  CAS  Google Scholar 

  29. M.D. Goel, M. Peroni, G. Solomos, D.P. Mondal, V.A. Matsagar, A.K. Gupta, M. Larcher, and S. Marburg: Dynamic compression behavior of cenosphere aluminum alloy syntactic foam. Mater. Des 42, 418 (2012).

    Article  CAS  Google Scholar 

  30. Z.Y. Dou, L.T. Jiang, G.H. Wu, Q. Zhang, Z.Y. Xiu, and G.Q. Chen: High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr. Mater 57, 945 (2007).

    Article  CAS  Google Scholar 

  31. D. Ghosh, A. Wiest, and R.D. Conner: Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres. J. Eur. Ceram 36, 781 (2016).

    Article  CAS  Google Scholar 

  32. A. Paul and U. Ramamurty: Strain rate sensitivity of a closed-cell aluminum foam. Mater. Sci. Eng. A 281, 1 (2000).

    Article  Google Scholar 

  33. D.K. Balch, J.G. O'Dwyer, G.R. Davis, C.M. Cady, G.T. Gray, and D.C. Dunand: Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mater. Sci. Eng. A 391, 408 (2005).

    Article  CAS  Google Scholar 

  34. J.A. Santa Maria, B.F. Schultz, J. Ferguson, N. Gupta, and P.K. Rohatgi: Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams. J. Mater. Sci 49, 1267 (2014).

    Article  CAS  Google Scholar 

  35. Q. Li, I. Magkiriadis, and J.J. Harrigan: Compressive strain at the onset of densification of cellular solids. J. Cell. Plast 42, 371 (2006).

    Article  CAS  Google Scholar 

  36. X.-q. Cao, Z.-h. Wang, L.-m. Zhao, and G.-t. Yang: Effects of cell size on compressive properties of aluminum foam. Trans. Nonferrous Met. Soc 16, 351 (2006).

    Article  CAS  Google Scholar 

  37. C. Park and S. Nutt: Strain rate sensitivity and defects in steel foam. Mater. Sci. Eng. A 323, 358 (2002).

    Article  Google Scholar 

  38. A. Rabiei, and M. Garcia-Avila: Effect of various parameters on properties of composite steel foams under variety of loading rates. Mater. Sci. Eng. A 564, 539 (2013).

    Article  CAS  Google Scholar 

  39. Y. Alvandi-Tabrizi, D.A. Whisler, H. Kim, and A. Rabiei: High strain rate behavior of composite metal foams. Mater. Sci. Eng. A 631, 248 (2015).

    Article  CAS  Google Scholar 

  40. B. Zhang, Y. Lin, S. Li, D. Zhai, and G. Wu: Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos. B. Eng 98, 288 (2016).

    Article  CAS  Google Scholar 

  41. P. Li, N. Petrinic, C. Siviour, R. Froud, and J. Reed: Strain rate dependent compressive properties of glass microballoon epoxy syntactic foams. Mater. Sci. Eng. A 515, 19 (2009).

    Article  CAS  Google Scholar 

  42. M. Vural and G. Ravichandran: Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis. Int. J. Solids. Struct 40, 2147 (2003).

    Article  Google Scholar 

  43. W.D. Callister and D.G. Rethwisch: Materials Science and Engineering, 7th ed. (John Wiley & Sons Inc, New York, 2011), pp. 344.

    Google Scholar 

  44. J. Lankford: Compressive strength and microplasticity in polycrystalline alumina. Mater. Sci 12, 791 (1977).

    Article  CAS  Google Scholar 

  45. Z. Wang and P. Li: Dynamic failure and fracture mechanism in alumina ceramics: Experimental observations and finite element modelling. Ceram. Int. 41, 12763 (2015).

    Article  CAS  Google Scholar 

  46. P.J. Tan, J.J. Harrigan, and S.R. Reid: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater. Sci 18, 480 (2002).

    CAS  Google Scholar 

  47. G. Subhash, Q. Liu, and X.-L. Gao: Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. Int. J. Impact Eng 32, 1113 (2006).

    Article  Google Scholar 

  48. V.S. Deshpande and N.A. Fleck: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng 24, 277 (2000).

    Article  Google Scholar 

  49. J.J. Harrigan, S.R. Reid, and C. Peng: Inertia effects in impact energy absorbing materials and structures. Int. J. Impact Eng 22, 955 (1999).

    Article  Google Scholar 

  50. S.R. Reid and C. Peng: Dynamic uniaxial crushing of wood. Int. J. Impact Eng 19, 531 (1997).

    Article  Google Scholar 

  51. C.R. Calladine and R.W. English: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Impact Eng 26, 689 (1984).

    Google Scholar 

  52. T.G. Zhang and T.X. Yu: A note on a ‘velocity sensitive’ energy-absorbing structure. Int. J. Impact Eng 8, 45 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Ghosh.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banda, M., Akurati, S. & Ghosh, D. Governing role of the ratio of large platelet particles to ultrafine particles on dynamic and quasistatic compressive response and damage evolution in ice-templated alumina ceramics. Journal of Materials Research 35, 2870–2886 (2020). https://doi.org/10.1557/jmr.2020.297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.297

Navigation