Skip to main content
Log in

Role of Ru on the microstructure and property of novel Co–Ti–V Superalloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present paper, the authors investigated the microstructures and mechanical properties of dual-phase Co–Ti–V-based superalloys with different additions of Ru. The results showed that with the increase of Ru contents, the size of γ′ precipitates of the alloy gradually raised, the volume fraction of γ′ phase slightly, and the lattice misfit between γ/γ′ phases increased. Ru was enriched in the γ′ phase, and the elemental partition coefficients (KX = Cγ′/Cγ) of Ti and V increased with the increment of Ru. The Ru contents have no remarkable influence on the solvus temperatures of γ′ in the Co–Ti–V alloys. The yield strength at 1000 °C of the Co–10Ti–11V–0.5Ru alloy was the highest, while the yield strength of the 1Ru alloy was the smallest. Transmission electron microscopy and scanning electron microscopy observations showed that the γ′ shape in the compressed specimen containing 0.5Ru remain integrated, while the γ′ in other alloys were cut into several parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Table 1:
Table 2:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Table 3:

Similar content being viewed by others

References

  1. T.M. Pollock and S. Tin: Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 361, 22 (2006).

    Google Scholar 

  2. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: New Co-based γ/γ′ high-temperature alloys. JOM 58, 62 (2010).

    Google Scholar 

  3. W.J. Lin, J.F. Duan, and C.L. Wang: Study on precipitation enhancement of Ni-based superalloys. Foundry Technol. 607, 29 (2008).

    Google Scholar 

  4. X.H. Li, B. Gan, and Q. Feng: Co-Al-W ternary alloy heat treatment organization. J. Sci. Eng. 1369, 30 (2008) (in Chinese).

    Google Scholar 

  5. J.R. Davis: Nickel, Cobalt, and Their Alloys (ASM International, Materials Park, OH, USA, 2000).

    Google Scholar 

  6. H. Chinen, J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: New ternary compound Co3(Ge, W) with L12 structure. Scr. Mater. 141, 56 (2007).

    Google Scholar 

  7. A.V. Davydov, U.R. Kattner, D. Jossel, J.E. Blendell, R.M. Waterstrat, A.J. Shaprio, and W.J. Boettinger: Determination of the Co-Ti congruent Melting point and thermodynamic reassessment of the Co-Ti system. Metall. Mater. Trans. A 2175, 32 (2001).

    Google Scholar 

  8. K. Shinagawa, H. Chinen, T. Omori, K. Oikawa, I. Ohnuma, and R. Kainuma: Phase equilibria and thermodynamic calculation of the Co-Ta binary system. Intermetallics 87, 49 (2014).

    Google Scholar 

  9. L. Zhu, C. Wei, H. Qi, L. Jiang, Z. Jin, and J.C. Zhao: Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X = W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples. J. Alloy Compd. 110, 691 (2017).

    Google Scholar 

  10. A. Suzuki, H. Inui, and T.M. Pollock: L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 345, 45 (2015).

    Google Scholar 

  11. K. Tanake, T. Ohashi, and K. Kishida: Single-crystal elastic constants of Co(Al,W) with the L12 structure. App. Phys. Lett. 307, 91 (2007).

    Google Scholar 

  12. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, and H. Inui: Effects of quaternary alloying elements on the γ′ solvus temperature of Co-Al-W based alloys with fcc/L12 two-phase microstructures. J. Alloy Compd. 71, 508 (2010).

    Google Scholar 

  13. S. Akanes and T.M. Pollock: High-temperature strength and deformation of γ/γ′ two-phase Co-Al-W-base alloys. Scr. Mater. 1288, 56 (2008).

    Google Scholar 

  14. J. Sato, T. Tomori, and K. Oikawa: Cobalt-base high-temperature alloys. Science 90, 312 (2006).

    Google Scholar 

  15. A. Suzuki, G.C. DeNolf, and T.M. Pollock: Flow stress anomalies in γ/γ′ two-phase Co-Al-W-base alloys. Scr. Mater. 385, 56 (2007).

    Google Scholar 

  16. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 1197, 63 (2010).

    Google Scholar 

  17. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Partition behavior of alloying elements and phase transformation temperatures in Co-Al-W-base quaternary systems. Intermetallics 274, 32 (2013).

    Google Scholar 

  18. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida: Ductility enhancement by boron addition in Co-Al-W high-temperature alloys. Scr. Mater. 612, 61 (2009).

    Google Scholar 

  19. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Phase equilibria and microstructure on γ′ phase in Co-Ni-Al-W system. Mater. Trans. 1474, 49 (2008).

    Google Scholar 

  20. Y. Tsukamoto, S. Kobayashi, and T. Takasugi: The stability of γ′-Co3(Al, W) phase in Co-Al-W ternary system. Mater. Sci. Forum 448, 654–656 (2010).

    Google Scholar 

  21. S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida, and S. Zaefferer: Determination of phase equilibria in the Co-rich Co-Al-W ternary system with a diffusion-couple technique. Intermetallics 1085, 17 (2009).

    Google Scholar 

  22. S. Kobayashi, Y. Tsukamoto, and T. Takasugi: The effects of alloying elements (Ta, Hf) on the thermodynamic stability of γ′-Co3 (Al, W) phase. Intermetallics 94, 31 (2012).

    Google Scholar 

  23. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Goken: Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 304, 106 (2016).

    Google Scholar 

  24. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Microstructural and creep properties of boron- and zirconium-containing cobalt-based superalloys. Mater. Sci. Eng. A 260, 682 (2017).

    Google Scholar 

  25. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at.%) superalloys. Mater. Sci. Eng. A 122, 705 (2017).

    Google Scholar 

  26. P.J. Bocchini, C.K. Sudbrack, D.J. Sauza, R.D. Noebe, D.N. Seidman, and D.C. Dunand: Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0, 2, 4, 6) W-6Ti (at.%) cobalt-based superalloys. Mater. Sci. Eng. A 481, 700 (2017).

    Google Scholar 

  27. S.K. Makineni, B. Nithin, and K. Chattopadhyay: A new tungsten-free γ-γ′ Co-Al-Mo-Nb-based superalloy. Scr. Mater. 36, 98 (2015).

    Google Scholar 

  28. J.J. Ruan, C.P. Wang, and C.C. Zhao: Experimental investigation of phase equilibria and microstructure in the Co-Ti-V ternary system. Intermetallics 121, 49 (2014).

    Google Scholar 

  29. C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, and M. Göken: A novel type of Co-Ti-Cr-based γ/γ′ superalloys with low mass density. Acta Mater. 244, 135 (2017).

    Google Scholar 

  30. J.J. Ruan, X.J. Liu, and S.Y. Yang: Novel Co-Ti-V-base superalloys reinforced by L12-ordered γ′ phase. Intermetallics 126, 92 (2018).

    Google Scholar 

  31. L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: High refractory, low misfit Ru-containing single-crystal superalloys. Metall. Mater. Trans. A 2927, 37 (2006).

    Google Scholar 

  32. L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Mater. Sci. Eng. A 292, 457 (2007).

    Google Scholar 

  33. S. Tin, A.C. Yeh, A.P. Ofori, R.C. Reed, S.S. Babu, and M.K. Miller: Atomic partitioning of Ruthenium in Ni-based superalloys. In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston eds. (Proceedings of the Tenth International Symposium on Superalloys, Champion, PA, 2004); p. 735.

    Google Scholar 

  34. Y. Zhou, Z.G. Mao, C.B. Morrison, and D.N. Seidman: The partitioning and site preference of rhenium or ruthenium in model nickel-based superalloys: An atom-probe tomographic and first-principles study. Appl. Phys. Lett. 171905, 93 (2008).

    Google Scholar 

  35. D.J. Sauza, P.J. Bocchini, D.C. Dunand, and D.N. Seidman: Influence of ruthenium on microstructural evolution in a model Co-Al-W superalloy. Acta Mater. 135, 117 (2016).

    Google Scholar 

  36. M. Chen and C-Y. Wang: First-principles study of the partitioning and site preference of Re or Ru in Co-based superalloys with interface. Phys. Lett. A 3238, 374 (2010).

    Google Scholar 

  37. H. Mughrabi: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys — With special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 21, 81 (2014).

    Google Scholar 

  38. M. Chen and C-Y. Wang: First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′ -Co3(Al,W). Scr. Mater. 659, 60 (2009).

    Google Scholar 

  39. Y.L. Du, J.P. Niu, G.X. Wang, J.L. Liu, J.D. Liu, Y.Z. Zhou, T. Jin, and X.F. Sun: Effect of Ru on the microstructure of Ni-based single-crystal superalloys. Rare Metal Mater. Eng. 1248, 47 (2018) (in Chinese).

    Google Scholar 

  40. J.X. Zhang, H. Harada, Y. Koizumi, and T. Kobayashi: Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit. J. Mater. Sci. 523, 45 (2010).

    Google Scholar 

  41. J.Y. Chen, B. Zhao, Q. Feng, L.M. Cao, and Z.Q. Sun: Effect of Ru and Cr on γ/γ′ microstructural evolution of Ni-based single-crystal superalloys during heat treatment. Acta Metall. Sin. 897, 46 (2010).

    Google Scholar 

  42. M.G. Wang, S.G. Tian, and X.F. Yu: Effects of Re and temperature on lattice constants and misfit of single crystal nickel-based alloys. Rare Metal Mater. Eng. 268, 39 (2010).

    Google Scholar 

  43. H. Mughrabi: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys-with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 21, 81 (2014).

    Google Scholar 

  44. P. Viatour, J.M. Drapier, and D. Coutsouradis: Stability of the gamma prime Co3Ti compound in simple and complex Co alloys. Cobalt 3, 67 (1973).

    Google Scholar 

  45. M. Titus, A. Suzuki, and T. Pollock: Creep and directional coarsening in single crystals of new γ/γ′ cobalt-base alloys. Scr. Mater. 574, 66 (2012).

    Google Scholar 

  46. C. Rogister, D. Coutsouradis, and L. Habraken: Improvement of heat-resisting cobalt-base alloys by precipitation hardening. Cobalt 3, 34 (1967).

    Google Scholar 

  47. A.C. Yeh: Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr. Mater. 519, 52 (2005).

    Google Scholar 

  48. M.R. Jahangiri, S.M.A. Boutorabi, and H. Arabi: Study on incipient melting in cast Ni base IN939 superalloy during solution annealing and its effect on hot workability. Mater. Sci. Technol. 1402, 28 (2012).

    Google Scholar 

Download references

Acknowledgments

This research was financially supported from Project (51471079) by the National Natural Science Foundation of China and Project (BK20130464) by the Jiangsu Natural Science Foundation. The authors would also like to acknowledge the financial support from the Jiangsu Government scholarship for Oversea Studies. This work also supported by the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China; the Key Research and Development Program of Shaanxi (Program Nos. 2019GY-151, 2019GY-178, and 2020GY-251); the National Natural Science Foundation of China (51901193); and the Science and Technology Plan Project of Weiyang District in Xi'an City (201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Gao, X., Song, D. et al. Role of Ru on the microstructure and property of novel Co–Ti–V Superalloy. Journal of Materials Research 35, 2737–2745 (2020). https://doi.org/10.1557/jmr.2020.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.251

Navigation