Skip to main content
Log in

Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To detect low concentrations of formaldehyde selectively, the sensing properties of SnO2 nanostructured are enhanced by modifying with p-type semiconductor NiO. In this study, a nanostructured SnO2/NiO composite was prepared by a simple hydrothermal method. The X-ray photoelectron spectroscopy (XPS) peak in 532.4 eV proved that the existence of the SnO2/NiO composite structure increased the amount of adsorbed oxygen O and O2− significantly. Gas-sensing tests showed that these mixed phases SnO2/NiO are highly promising for gas sensor applications, as the gas response for formaldehyde was significantly enhanced in gas response, selectivity at an operating temperature of 230 °C. The sensor fabricated by SnO2/NiO composite can detect as low as 1 ppm of formaldehyde at 230 °C, and the corresponding response is 1.57. The results of physicochemical properties tests of the samples show that the enhancement in sensitivity and selectivity is attributed to the oxygen vacancies and heterojunction between SnO2 and NiO. The SnO2/NiO composites can be applied to sensitive materials of formaldehyde sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R.-z. Liu, Q. Bao fu, L. Feng min, C. Li hua, and L. Min: Research on In2O3-based formaldehyde sensor. Electron. Compon. Mater. 25, 15 (2006).

    Google Scholar 

  2. N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, and J. Xu: A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sens. Actuators, B 294, 106 (2019).

    Article  CAS  Google Scholar 

  3. H. Zhu, J. She, M. Zhou, and X. Fan: Rapid and sensitive detection of formaldehyde using portable 2-dimensional gas chromatography equipped with photoionization detectors. Sens. Actuators, B 283, 182 (2019).

    Article  CAS  Google Scholar 

  4. Z. Lin, N. Li, Z. Chen, and P. Fu: The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens. Actuators, B 239, 501 (2017).

    Article  CAS  Google Scholar 

  5. L. Zhu and W. Zeng: Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators, A 267, 242 (2017).

    Article  CAS  Google Scholar 

  6. R. Chava, S.-Y. Oh, and Y.-T. Yu: Enhanced H2 gas sensing properties of Au@In2O3 core-shell hybrid metal-semiconductor heteronanostructures. CrystEngComm 18, 3655 (2016).

    Article  CAS  Google Scholar 

  7. S. Wang, W. Yu, C. Cheng, T. Zhang, and M. Ge: Fabrication of mesoporous SnO2 nanocubes with superior ethanol gas sensing property. Mater. Res. Bull. 89, 267 (2017).

    Article  CAS  Google Scholar 

  8. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, and R. Snyders: Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. 47, 565 (2011).

    Article  CAS  Google Scholar 

  9. Z. Dou, C. Cao, Y. Chen, and W. Song: Fabrication of porous Co3O4 nanowires with high CO sensing performance at a low operating temperature. Chem. Commun. 50, 14889 (2014).

    Article  CAS  Google Scholar 

  10. J.A. Dirksen, K. Duval, and T.A. Ring: NiO thin-film formaldehyde gas sensor. Sens. Actuators, B 80, 106 (2001).

    Article  CAS  Google Scholar 

  11. C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, and N. Yamazoe: Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl. Mater. Interfaces 6, 12031 (2014).

    Article  CAS  Google Scholar 

  12. Y.J. Jeong and C. Balamurugan: Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens. Actuators, B 229, 288 (2016).

    Article  CAS  Google Scholar 

  13. Y. Kaneti, Z. Zhang, C. Chen, and J. Yue: Solvothermal synthesis of ZnO-decorated alpha-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J. Mater. Chem. A 2, 13283 (2014).

    Article  CAS  Google Scholar 

  14. Y. Jeong, W.-T. Koo, J.-S. Jang, D.-H. Kim, and M.-H. Kim: Nanoscale PtO2 catalysts-loaded SnO2 multichannel nanofibers toward highly sensitive acetone sensor. ACS Appl. Mater. Interfaces 10, 2016 (2018).

    Article  CAS  Google Scholar 

  15. M. Weber, J.-H. Lee, J.-Y. Kim, and I. Iatsunskyi: High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal-organic framework membranes. ACS Appl. Mater. Interfaces 10, 34765 (2018).

    Article  CAS  Google Scholar 

  16. H. Chen, Y. Zhao, L. Shi, G.-D. Li, and L. Sun: Revealing the relationship between energy level and gas sensing performance in heteroatom-doped semiconducting nanostructures. ACS Appl. Mater. Interfaces 10, 29795 (2018).

    Article  CAS  Google Scholar 

  17. H.-M. Jeong, J.-H. Kim, S.-Y. Jeong, C.-H. Kwak, and J.-H. Lee: Co3O4-SnO2 hollow heteronanostructures: Facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement. ACS Appl. Mater. Interfaces 8, 7877 (2016).

    Article  CAS  Google Scholar 

  18. H. Ji, W. Zeng, and Y. Li: Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 11, 22664 (2019).

    Article  CAS  Google Scholar 

  19. Z. Zhang, M. Xu, L. Liu, X. Ruan, and J. Yan: Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators, B 257, 714 (2018).

    Article  CAS  Google Scholar 

  20. S. Sen, P. Kanitkar, A. Sharma, K.P. Muthe, and A. Rath: Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens. Actuators, B 147, 453 (2010).

    Article  CAS  Google Scholar 

  21. F. Li, T. Zhang, X. Gao, R. Wang, and B. Li: Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens. Actuators, B 252, 822 (2017).

    Article  CAS  Google Scholar 

  22. L. Wang, H. Liu, H. Fu, Y. Wang, and K. Yu: Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. J. Mater. Res. 33, 1401 (2018).

    Article  CAS  Google Scholar 

  23. D. Wang, K. Wan, M. Zhang, H. Li, P. Wang, X. Wang, and J. Yang: Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators, B 283, 714 (2019).

    Article  CAS  Google Scholar 

  24. J. Walker, S. Akbar, and P. Morris: Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sens. Actuators, B 286, 624 (2019).

    Article  CAS  Google Scholar 

  25. J. Hu, X. Li, X. Wang, Y. Li, and Q. Li: Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties. J. Mater. Res. 33, 1433 (2018).

    Article  CAS  Google Scholar 

  26. Y. Cui, M. Zhang, X. Li, B. Wang, and R. Wang: Investigation on synthesis and excellent gas-sensing properties of hierarchical Au-loaded SnO2 nanoflowers. J. Mater. Res. 34, 2944 (2019).

    Article  CAS  Google Scholar 

  27. A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, and Y. Dong: Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning. J. Mater. Res. 34, 2067 (2019).

    Article  CAS  Google Scholar 

  28. M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, and P. Siciliano: SNO2 thin-films for gas sensor prepared by rf reactive sputtering. Sens. Actuators, B 25, 465 (1995).

    Article  Google Scholar 

  29. S. Bai, H. Fu, Y. Zhao, K. Tian, and R. Luo: On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to enhance the NO2 sensing properties. Sens. Actuators, B 266, 692 (2018).

    Article  CAS  Google Scholar 

  30. K.S. Kim and N. Winograd: X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf. Sci. 43, 625 (1974).

    Article  CAS  Google Scholar 

  31. H. Wang, Y. Qu, H. Chen, Z. Lin, and K. Dai: Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens. Actuators, B 201, 153 (2014).

    Article  CAS  Google Scholar 

  32. H. Ren, W. Zhao, L. Wang, S.O. Ryu, and C. Gu: Preparation of porous flower-like SnO2 micro/nano structures and their enhanced gas sensing property. J. Alloys Compd. 653, 611 (2015).

    Article  CAS  Google Scholar 

  33. Y. Shimizu and M. Egashira: Basic aspects and challenges of semiconductor gas sensors. MRS Bull. 24, 18 (1999).

    Article  CAS  Google Scholar 

  34. D. Hu, B. Han, S. Deng, Z. Feng, and Y. Wang: Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J. Phys. Chem. C 118, 9832 (2014).

    Article  CAS  Google Scholar 

  35. G. Yin, J. Sun, F. Zhang, W. Yu, and F. Peng: Enhanced gas selectivity induced by surface active oxygen in SnO/SnO2 heterojunction structures at different temperatures. RSC Adv. 9, 1903 (2019).

    Article  CAS  Google Scholar 

  36. N. Yamazoe: New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5, 7 (1991).

    Article  CAS  Google Scholar 

  37. J. Sun, G. Yin, T. Cai, W. Yu, F. Peng, Y. Sun, F. Zhang, J. Lu, M. Ge, and D. He: The role of oxygen vacancies in the sensing properties of Ni substituted SnO2 microspheres. RSC Adv. 8, 33080 (2018).

    Article  CAS  Google Scholar 

  38. W. Dai, X. Pan, S. Chen, C. Chen, and Z. Wen: Honeycomb-like NiO/ZnO heterostructured nanorods: Photochemical synthesis, characterization, and enhanced UV detection performance. J. Mater. Chem. C 2, 4606 (2014).

    Article  CAS  Google Scholar 

  39. G. Sun, H. Chen, Y. Li, Z. Chen, S. Zhang, G. Ma, T. Jia, J. Cao, H. Bala, X. Wang, and Z. Zhang: Synthesis and improved gas sensing properties of NiO-decorated SnO2 microflowers assembled with porous nanorods. Sens. Actuators, B 233, 180 (2016).

    Article  CAS  Google Scholar 

  40. H.-J. Kim and J.-H. Lee: Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators, B 192, 607 (2014).

    Article  CAS  Google Scholar 

  41. C. Liu, L. Zhao, B. Wang, P. Sun, Q. Wang, Y. Gao, X. Liang, T. Zhang, and G. Lu: Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit. J. Colloid Interface Sci. 495, 207 (2017).

    Article  CAS  Google Scholar 

  42. J. Chun, J. Kim, W. Choi and J. Baik: Self-powered, room-temperature electronic nose based on triboelectrification and heterogeneous catalytic reaction. Adv. Funct. Mater. 25(45), 7049 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key R&D Program of China (2016YFA0202200), National Natural Science Foundation of China (No. 21677095), Program of Shanghai Academic/Technology Research Leader (No. 18XD1422400), and China Postdoctoral Science Foundation (No. 2018M642021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Ge.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Ge, M., Zhang, F. et al. Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. Journal of Materials Research 35, 3079–3090 (2020). https://doi.org/10.1557/jmr.2020.239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.239

Navigation