Skip to main content
Log in

The effect of MoW interlayer thickness on diamond growth on steel substrates

  • Article
  • The Science and Technology of Vapor Phase Processing and Modification of Surfaces
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article reports findings when using a molybdenum–tungsten (MoW) interlayer for diamond thin film deposition on steel substrates. The main focus was on the postdeposition stress within the diamond films and its impact on the coating’s tribological properties. The effect of MoW interlayer thickness and the effect of chemical vapor deposition (CVD) process temperature have been investigated. Nanocrystalline diamond films were deposited on steel substrates with MoW interlayers (thickness of 1.1, 4.5, and 8.3 µm) at two different deposition temperatures (650 and 875 °C). It was found that when depositing good quality diamond films on steel substrates, increasing interlayer thickness and decreasing CVD process temperature have to be jointly considered to obtain the optimal result. The diamond-coated steel substrates with the 8.3 µm interlayer deposited at the lower CVD processing temperature exhibited the least residual stress combined with excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. I. García, A. Conde, J.J. de Damborenea, and A.J. Vázquez: Electrochemical behaviour of molybdenum coated with flame CVD polycrystalline diamond film. Thin Solid Films 310, 217–221 (1997).

    Article  Google Scholar 

  2. Q. Wei, Z.M. Yu, M.N.R. Ashfold, L. Ma, and Z. Chen: Fretting wear and electrochemical corrosion of well-adhered CVD diamond films deposited on steel substrates with a WC–Co interlayer. Diamond Relat. Mater. 19, 1144–1152 (2010).

    Article  CAS  Google Scholar 

  3. E. Cappelli, F. Pinzari, P. Ascarelli, and G. Righini: Diamond nucleation and growth on different cutting tool materials: Influence of substrate pre-treatments. Diamond Relat. Mater. 5, 292–298 (1996).

    Article  CAS  Google Scholar 

  4. D. Das, R.N. Singh, S. Chattopadhyay, and K.H. Chen: Thermal conductivity of diamond films deposited at low surface temperatures. J. Mater. Res. 21, 2379–2388 (2006).

    Article  CAS  Google Scholar 

  5. H. Ye, C.Q. Sun, P. Hing, H. Xie, and S. Zhang: Nucleation and growth dynamics of diamond films by microwave plasma-enhanced chemical vapor deposition (MPECVD). Surf. Coat. 123, 129–133 (2000).

    Article  CAS  Google Scholar 

  6. J.G. Buijnsters, P. Shankar, and J.J. ter Meulen: Direct deposition of polycrystalline diamond onto steel substrates. Surf. Coat. Technol. 201, 8955–8960 (2007).

    Article  CAS  Google Scholar 

  7. P.S. Weiser and S. Prawer: Chemical vapour deposition of diamond onto iron based substrates—The use of barrier layers. Diamond Relat. Mater. 4, 710–713 (1995).

    Article  CAS  Google Scholar 

  8. V.G. Ralchenko, A.A. Smolin, V.G. Pereverzev, E.D. Obraztsova, K.G. Korotoushenko, V.I. Konov, Y.V. Lakhotkin, and E.N. Loubnin: Diamond deposition on steel with CVD tungsten intermediate layer. Diamond Relat. Mater. 4, 754–758 (1995).

    Article  CAS  Google Scholar 

  9. O. Glozman and A. Hoffman: Adhesion improvement of diamond films on steel substrates using chromium nitride interlayers. Diamond Relat. Mater. 6, 796–801 (1997). Available at: http://www.sciencedirect.com/science/article/pii/S0925963596006711 (accessed July 1, 2013).

    Article  CAS  Google Scholar 

  10. F.J.G. Silva, A.J.S. Fernandes, F.M. Costa, A.P.M. Baptista, and E. Pereira: A new interlayer approach for CVD diamond coating of steel substrates. Diamond Relat. Mater. 13, 828–833 (2004).

    Article  CAS  Google Scholar 

  11. F.J.G. Silva, A.P.M. Baptista, and E. Pereira: Microwave plasma chemical vapour deposition diamond nucleation on ferrous substrates with Ti and Cr interlayers. Diamond Relat. Mater. 11, 1617–1622 (2002).

    Article  CAS  Google Scholar 

  12. X. Xiao, B.W. Sheldon, E. Konca, L.C. Lev, and M.J. Lukitsch: The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond Relat. Mater. 18, 1114–1117 (2009).

    Article  CAS  Google Scholar 

  13. Q. Fan, A. Fernandes, and J. Gracio: Diamond coating on steel with a titanium interlayer. Diamond Relat. Mater. 7, 5–8 (1998). Available at: http://www.sciencedirect.com/science/article/pii/S0925963597002872 (accessed July 1, 2013).

    Article  Google Scholar 

  14. J. Spinnewyn, M. Nesládek, and C. Asinari: Diamond nucleation on steel substrates. Diamond Relat. Mater. 2, 361–364 (1993). Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027569326&partnerID=40&md5=42df4d68d51192649dd3c67da8b6c213.

    Article  CAS  Google Scholar 

  15. A. Laikhtman, L. Rapoport, V. Perfilyev, A. Moshkovich, R. Akhvlediani, and A. Hoffman: Tribological and adhesion properties of CVD diamond films grown on steel with a Cr–N interlayer. AIP Conf. Proc. 157, 157–161 (2009).

    Article  CAS  Google Scholar 

  16. R. Haubner and B. Lux: Diamond deposition on steel substrates using intermediate layers. Int. J. Refract. Met. Hard Mater. 24, 380–386 (2006).

    Article  CAS  Google Scholar 

  17. S. Schwarz, S.M. Rosiwal, Y. Musayev, and R.F. Singer: High temperature diffusion chromizing as a successful method for CVD-diamond coating of steel—Part II. Diamond Relat. Mater. 12, 701–706 (2003).

    Article  CAS  Google Scholar 

  18. Y.C. Chu, G. Jiang, C. Chang, J.M. Ting, H. L. Lee, and Y. Tzeng: Roomtemperature diamond seeding and microwave plasma enhanced CVD growth of nanodiamond with a tungsten interfacial layer. In 2011 11th IEEE International Conference on Nanotechnology, NANO 2011. [6144477] (Proceedings of the IEEE Conference on Nanotechnology, 2011); pp. 1367–1370. https://doi.org/10.1109/NANO.2011.6144477.

  19. Y-C. Chu, C-H. Tu, G. Jiang, C. Chang, C. Liu, J-M. Ting, H-L. Lee, Y. Tzeng, and O. Auciello: Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer. J. Appl. Phys. 111, 124328 (2012).

    Article  CAS  Google Scholar 

  20. N.N. Naguib, J.W. Elam, J. Birrell, J. Wang, D.S. Grierson, B. Kabius, J.M. Hiller, A.V. Sumant, R.W. Carpick, O. Auciello, and J.A. Carlisle: Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers. Chem. Phys. Lett. 430, 345–350 (2006).

    Article  CAS  Google Scholar 

  21. C.Z. Zhang, H. Niakan, L. Yang, Y.S. Li, Y.F. Hu, and Q. Yang: Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf. Coat. Technol. 237, 248–254 (2013).

    Article  CAS  Google Scholar 

  22. M. Whitfield, J. Savage, and R. Jackman: Nucleation and growth of diamond films on single crystal and polycrystalline tungsten substrates. Diamond Relat. Mater. 9, 262–268 (2000). Available at: http://www.sciencedirect.com/science/article/pii/S0925963500002363 (accessed August 17, 2014).

    Article  CAS  Google Scholar 

  23. V. Kundrát, X. Zhang, K. Cooke, H. Sun, J. Sullivan, and H. Ye: A novel Mo–W interlayer approach for CVD diamond deposition on steel. AIP Adv. 5, 047130 (2015).

    Article  CAS  Google Scholar 

  24. C.Z. Zhang, L. Yang, Y.F. Hu, Q. Yang, and H. Niakan: Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf. Coat. Technol. 237, 248 (2013).

    Article  CAS  Google Scholar 

  25. J.G. Buihnsters, R. Escobar Galindo, L. Vázquez, and J.J. ter Meulen: Molybdenum interlayer for nucleation enhancement in diamond CVD growth. J. Nanosci. Nanotechnol. 10, 2885–2891 (2010).

    Article  CAS  Google Scholar 

  26. C. Wild, N. Herres, and P. Koidl: Texture formation in polycrystalline diamond films. J. Appl. Phys. 68, 973 (1990).

    Article  CAS  Google Scholar 

  27. P. Smereka, X. Li, G. Russo, and D.J. Srolovitz: Simulation of faceted film growth in three dimensions: Microstructure, morphology and texture. Acta Mater. 53, 1191–1204 (2005).

    Article  CAS  Google Scholar 

  28. H-L. Chen, Y-M. Lu, and W-S. Hwang: Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater. Trans. 46, 872–879 (2005).

    Article  CAS  Google Scholar 

  29. B. Fultz and J. Howe: Diffraction and the X-ray powder diffractometer. In Transmission Electron Microscopy and Diffractometry of Materials SE-1 (Springer, Berlin Heidelberg, 2013); pp. 1–57.

    Chapter  Google Scholar 

  30. K. Herrmann: Hardness Testing: Principles and Applications (ASM International, Materials Park, Ohio, USA, 2011). Available at: http://app.knovel.com/web/toc.v/cid:kpHTPA0004/viewerType:toc/root_slug:hardness-testing-principles/url_slug:hardness-testing-principles/? (accessed February 14, 2015).

    Google Scholar 

  31. I.M. Hutchings and P. Shipway: Tribology: Friction and Wear of Engineering Materials (Elsevier Ltd. Amsterdam, Netherlands 2017).

    Google Scholar 

  32. Y. Xie and H. Hawthorne: Effect of contact geometry on the failure modes of thin coatings in the scratch adhesion test. Surf. Coat. Technol. 155, 121–129 (2002).

    Article  CAS  Google Scholar 

  33. A.C. Ferrari and J. Robertson: Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001).

    Article  CAS  Google Scholar 

  34. O.A. Williams, A. Kriele, J. Hees, M. Wolfer, W. Müller-Sebert, and C.E. Nebel: High Young’s modulus in ultra thin nanocrystalline diamond. Chem. Phys. Lett. 495, 84–89 (2010).

    Article  CAS  Google Scholar 

  35. J.W. Ager and M.D. Drory: Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B 48, 2601–2607 (1993). Available at: http://prb.aps.org/abstract/PRB/v48/i4/p2601_1 (accessed July 22, 2013).

    Article  CAS  Google Scholar 

  36. N. Ali, Q.H. Fan, J. Gracio, E. Pereira, and W. Ahmed: A comparison study of diamond adhesion on ductile metals. Thin Solid Films 377–378, 193–197 (2000). Available at: http://www.sciencedirect.com/science/article/pii/S0040609000012967 (accessed November 2, 2012).

    Article  Google Scholar 

  37. M.M. Nagl and W.T. Evans: The mechanical failure of oxide scales under tensile or compressive load. J. Mater. Sci. 28, 6247–6260 (1993).

    Article  CAS  Google Scholar 

  38. G.A. Slack and S.F.F. Bartram: Thermal expansion of some diamond like crystals. J. Appl. Phys. 46, 89–98 (1975).

    Article  CAS  Google Scholar 

  39. Böhler: Böhler S500 material data steet (2008). Available at: http://www.bohler-edelstahl.com/english/files/S500DE.pdf.

  40. M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Brühne, and H-J. Fecht: Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond films. J. Appl. Phys. 116, 124308 (2014).

    Article  CAS  Google Scholar 

  41. J. Philip, P. Hess, T. Feygelson, J.E. Butler, S. Chattopadhyay, K.H. Chen, and L.C. Chen: Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164–2171 (2003).

    Article  CAS  Google Scholar 

  42. J. Sermeus, B. Verstraeten, R. Salenbien, P. Pobedinskas, K. Haenen, and C. Glorieux: Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all-optical methods. Thin Solid Films 590, 284–292 (2015).

    Article  CAS  Google Scholar 

  43. H. Tanei, K. Tanigaki, K. Kusakabe, H. Ogi, N. Nakamura, and M. Hirao: Stacking-fault structure explains unusual elasticity of nanocrystalline diamonds. Appl. Phys. Lett. 94, 041914 (2009).

    Article  CAS  Google Scholar 

  44. C. Bareiß, M. Perle, S.M. Rosiwal, and R.F. Singer: Diamond coating of steel at high temperatures in hot filament chemical vapour deposition (HFCVD) employing chromium interlayers. Diamond Relat. Mater. 15, 754–760 (2006).

    Article  CAS  Google Scholar 

  45. J.G. Buijnsters, P. Shankar, W. Fleischer, W.J.P. van Enckevort, J.J. Schermer, and J.J. ter Meulen: CVD diamond deposition on steel using arc-plated chromium nitride interlayers. Diamond Relat. Mater. 11, 536–544 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by EPSRC Nanotechnology KTN Case Studentship ‘Nanodiamond Coatings for Advanced Engineering Application’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Ye.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundrát, V., Zhang, R., Zhang, X. et al. The effect of MoW interlayer thickness on diamond growth on steel substrates. Journal of Materials Research 35, 491–499 (2020). https://doi.org/10.1557/jmr.2020.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.2

Navigation