Skip to main content
Log in

Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals

  • Thermal and Structural Materials
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. Anisotropic indices are defined as the ratios of the eigenvalues of the elastic stiffness tensor [99] as follows: α = (C11 + C12C33)/C13, β = C66/C44, γ = C(1)/2C44, where \({C_1} = {{{C_{33}} + {C_{11}} + {C_{12}}} \over 2} - {{{C_{13}}\sqrt {{{{\alpha }}^2} + 8} } \over 2}.\).

References

  1. N.J. Kim: Critical assessment 6: Magnesium sheet alloys: Viable alternatives to steels? Mater. Sci. Technol. 30, 1925 (2014).

    Article  CAS  Google Scholar 

  2. M.K. Kulekci: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Article  Google Scholar 

  3. B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim: Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 84–85, 1 (2014).

    Article  CAS  Google Scholar 

  4. A.T. Motta, A. Yilmazbayhan, M.J.G. da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park: Zirconium alloys for supercritical water reactor applications: Challenges and possibilities. J. Nucl. Mater. 371, 61 (2007).

    Article  CAS  Google Scholar 

  5. R.R. Boyer: Attributes, characteristics, and applications of titanium and its alloys. JOM 62, 21 (2010).

    Article  CAS  Google Scholar 

  6. C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers: Biomedical applications of titanium and its alloys. JOM 60, 46 (2008).

    Article  CAS  Google Scholar 

  7. S.R. Agnew and O. Duygulu: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161 (2005).

    Article  CAS  Google Scholar 

  8. Y.N. Wang and J.C. Huang: The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater. 55, 897 (2007).

    Article  CAS  Google Scholar 

  9. M. Wronski, M. Arul Kumar, L. Capolungo, R. Madec, K. Wierzbanowski, and C.N. Tome: Deformation behavior of CP-titanium: Experiment and crystal plasticity modeling. Mater. Sci. Eng., A 724, 289 (2018).

    Article  CAS  Google Scholar 

  10. G. Proust, C.N. Tome, A. Jain, and S.R. Agnew: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).

    Article  CAS  Google Scholar 

  11. M.A. Kumar, I.J. Beyerlein, and C.N. Tome: A measure of plastic anisotropy for hexagonal close packed metals: Application to alloying effects on the formability of Mg. J. Alloys Compd. 695, 1488 (2017).

    Article  CAS  Google Scholar 

  12. I.J. Beyerlein, X.H. Zhang, and A. Misra: Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329 (2014).

    Article  CAS  Google Scholar 

  13. P.G. Partridge: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).

    Article  CAS  Google Scholar 

  14. M.H. Yoo: Interaction of slip dislocations with twins in hcp metals. Trans. Metall. Soc. AIME 245, 2051 (1969).

    CAS  Google Scholar 

  15. M.H. Yoo: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A 12, 409 (1981).

    Article  CAS  Google Scholar 

  16. M.H. Yoo and J.K. Lee: Deformation twinning in hcp metals and alloys. Philos. Mag. A 63, 987 (1991).

    Article  CAS  Google Scholar 

  17. W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: On the criteria for slip transmission across interfaces in polycrystals. Scr. Metall. Mater. 26, 203 (1992).

    Article  CAS  Google Scholar 

  18. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. (Krieger, Cambridge University Press, New York, USA, 1992).

    Google Scholar 

  19. D. Kuhlman-wilsdorf and N. Hansen: Geometrically necessary, incidental and subgrain boundaries. Scr. Metall. Mater. 25, 1557 (1991).

    Article  Google Scholar 

  20. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  21. M.R. Barnett, M.D. Nave, and A. Ghaderi: Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 60, 1433 (2012).

    Article  CAS  Google Scholar 

  22. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome: Statistical analyses of deformation twinning in magnesium (vol 90, pg 2161, 2010). Philos. Mag. 90, 4073 (2010).

    Article  CAS  Google Scholar 

  23. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tome: Nucleation and growth of twins in Zr: A statistical study. Acta Mater. 57, 6047 (2009).

    Article  CAS  Google Scholar 

  24. M.A. Kumar, M. Wroński, R.J. McCabe, L. Capolungo, K. Wierzbanowski, and C.N. Tomé: Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study. Acta Mater. 148, 123 (2018).

    Article  CAS  Google Scholar 

  25. L.Y. Wang, R. Barabash, T. Bieler, W.J. Liu, and P. Eisenlohr: Study of twinning in alpha-Ti by EBSD and laue microdiffraction. Metall. Mater. Trans. A 44, 3664 (2013).

    Article  CAS  Google Scholar 

  26. J. Wang, I.J. Beyerlein, and C.N. Tome: An atomic and probabilistic perspective on twin nucleation in Mg. Scr. Mater. 63, 741 (2010).

    Article  CAS  Google Scholar 

  27. J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tome, and I.J. Beyerlein: Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater. Res. Lett. 1, 126 (2013).

    Article  CAS  Google Scholar 

  28. C.D. Barrett and H. El Kadiri: The roles of grain boundary dislocations and disclinations in the nucleation of \(\left\{ {10\bar 12} \right\}\) twinning. Acta Mater. 63, 1 (2014).

    Article  CAS  Google Scholar 

  29. J.P. Hirth, J. Wang, and C.N. Tome: Disconnections and other defects associated with twin interfaces. Prog. Mater. Sci. 83, 417 (2016).

    Article  Google Scholar 

  30. M.S. Hooshmand, M.J. Mills, and M. Ghazisaeidi: Atomistic modeling of dislocation interactions with twin boundaries in Ti. Modell. Simul. Mater. Sci. 25, 045003 (2017).

    Article  Google Scholar 

  31. A. Ostapovets and R. Groger: Twinning disconnections and basal-prismatic twin boundary in magnesium. Modell. Simul. Mater. Sci. 22, 025015 (2014).

    Article  CAS  Google Scholar 

  32. A. Ostapovets and A. Serra: Characterization of the matrix-twin interface of a \(\left( {10\bar 12} \right)\) twin during growth. Philos. Mag. 94, 2827 (2014).

    Article  CAS  Google Scholar 

  33. J. Wang, I.J. Beyerlein, and J.P. Hirth: Nucleation of elementary \(\left\{ {\bar 1011} \right\}\) and \(\left\{ {\bar 1013} \right\}\) twinning dislocations at a twin boundary in hexagonal close-packed crystals. Modell. Simul. Mater. Sci. 20, 024001 (2012).

    Article  CAS  Google Scholar 

  34. J. Wang, L. Liu, C.N. Tome, S.X. Mao, and S.K. Gong: Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals. Mater. Res. Lett. 1, 81 (2013).

    Article  CAS  Google Scholar 

  35. H.D. Fan, S. Aubry, A. Arsenlis, and J.A. El-Awady: The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater. 92, 126 (2015).

    Article  CAS  Google Scholar 

  36. H.D. Fan, S. Aubry, A. Arsenlis, and J.A. El-Awady: Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scr. Mater. 112, 50 (2016).

    Article  CAS  Google Scholar 

  37. J.T. Lloyd: A dislocation-based model for twin growth within and across grains. Proc. R. Soc. A 474, 20170709 (2018).

    Article  CAS  Google Scholar 

  38. R. Kondo, Y. Tadano, and K. Shizawa: A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals. Comput. Mater. Sci. 95, 672 (2014).

    Article  CAS  Google Scholar 

  39. C. Liu, P. Shanthraj, M. Diehl, F. Roters, S. Dong, J. Dong, W. Ding, and D. Raabe: An integrated crystal plasticity-phase field model for spatially resolved twin nucleation, propagation, and growth in hexagonal materials. Int. J. Plast. 106, 203 (2018).

    Article  CAS  Google Scholar 

  40. H. Abdolvand, M. Daymond, and C. Mareau: Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2. Int. J. Plast. 27, 1721 (2011).

    Article  CAS  Google Scholar 

  41. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, and M. Knezevic: Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Methods Appl. Mech. Eng. 295, 396 (2015).

    Article  Google Scholar 

  42. I.J. Beyerlein and C.N. Tome: A probabilistic twin nucleation model for HCP polycrystalline metals. Proc. R. Soc. A 466, 2517 (2010).

    Article  CAS  Google Scholar 

  43. M.A. Kumar, I.J. Beyerlein, and C.N. Tome: Effect of local stress fields on twin characteristics in HCP metals. Acta Mater. 116, 143 (2016).

    Article  CAS  Google Scholar 

  44. M.A. Kumar, A.K. Kanjarla, S.R. Niezgoda, R.A. Lebensohn, and C.N. Tome: Numerical study of the stress state of a deformation twin in magnesium. Acta Mater. 84, 349 (2015).

    Article  CAS  Google Scholar 

  45. S.R. Niezgoda, A.K. Kanjarla, I.J. Beyerlein, and C.N. Tome: Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int. J. Plast. 56, 119 (2014).

    Article  CAS  Google Scholar 

  46. H. Wang, P.D. Wu, J. Wang, and C.N. Tome: A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 49, 36 (2013).

    Article  CAS  Google Scholar 

  47. H. Abdolvand and A.J. Wilkinson: Assessment of residual stress fields at deformation twin tips and the surrounding environments. Acta Mater. 105, 219 (2016).

    Article  CAS  Google Scholar 

  48. L. Balogh, S.R. Niezgoda, A.K. Kanjarla, D.W. Brown, B. Clausen, W. Liu, and C.N. Tome: Spatially resolved in situ strain measurements from an interior twinned grain in bulk polycrystalline AZ31 alloy. Acta Mater. 61, 3612 (2013).

    Article  CAS  Google Scholar 

  49. I. Basu, H. Fidder, V. Ocelik, and J.T.M. de Hosson: Local stress states and microstructural damage response associated with deformation twins in hexagonal close packed metals. Crystals 8, 1 (2018).

    Article  CAS  Google Scholar 

  50. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, and C.N. Tome: Modeling the effect of neighboring grains on twin growth in HCP polycrystals. Modell. Simul. Mater. Sci. 25, 064007 (2017).

    Article  Google Scholar 

  51. M.A. Kumar, I.J. Beyerlein, R.J. McCabe, and C.N. Tome: Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat. Commun. 7, 13826 (2016).

    Article  CAS  Google Scholar 

  52. Q. Ma, B. Li, E. Marin, and S. Horstemeyer: Twinning-induced dynamic recrystallization in a magnesium alloy extruded at 450 °C. Scr. Mater. 65, 823 (2011).

    Article  CAS  Google Scholar 

  53. D. Ando, J. Koike, and Y. Sutou: The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Mater. Sci. Eng., A 600, 145 (2014).

    Article  CAS  Google Scholar 

  54. S. Niknejad, S. Esmaeili, and N.Y. Zhou: The role of double twinning on transgranular fracture in magnesium AZ61 in a localized stress field. Acta Mater. 102, 1 (2016).

    Article  CAS  Google Scholar 

  55. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, and G.Y. Li: The role of twinning-detwinning on fatigue fracture morphology of Mg–3% Al–1% Zn alloy. Mater. Sci. Eng., A 494, 397 (2008).

    Article  CAS  Google Scholar 

  56. H. Abdolvand and M. Daymond: Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach-Part I: Average behavior. J. Mech. Phys. Solids 61, 783 (2013).

    Article  CAS  Google Scholar 

  57. H. Abdolvand, M. Majkut, J. Oddershede, J. Wright, and M. Daymond: Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part II—Crystal plasticity finite element modeling. Acta Mater. 93, 235 (2015).

    Article  CAS  Google Scholar 

  58. H. Abdolvand, M. Majkut, J. Oddershede, S. Schmidt, U. Lienert, B. Diak, P. Withers, and M. Daymond: On the deformation twinning of Mg AZ31B: A three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plast. 70, 77 (2015).

    Article  CAS  Google Scholar 

  59. H. Abdolvand, J. Wright, and A. Wilkinson: Strong grain neighbour effects in polycrystals. Nat. Commun. 9, 171 (2018).

    Article  CAS  Google Scholar 

  60. M.R. Barnett: Twinning and the ductility of magnesium alloys Part I: “Tension” twins. Mater. Sci. Eng., A 464, 1 (2007).

    Article  CAS  Google Scholar 

  61. T. Bieler, L. Wang, A. Beaudoin, P. Kenesei, and U. Lienert: In situ characterization of twin nucleation in pure Ti using 3D-XRD. Metall. Mater. Trans. A 45, 109 (2014).

    Article  CAS  Google Scholar 

  62. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: The effect of twin-twin interactions on the nucleation and propagation of \(\left\{ {10\bar 12} \right\}\) twinning in magnesium. Acta Mater. 61, 3549 (2013).

    Article  CAS  Google Scholar 

  63. M.A. Kumar, B. Clausen, L. Capolungo, R.J. McCabe, W. Liu, J.Z. Tischler, and C.N. Tome: Deformation twinning and grain partitioning in a hexagonal close-packed magnesium alloy. Nat. Commun. 9, 4761 (2018).

    Article  CAS  Google Scholar 

  64. M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein, and W. Reimers: In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg–4 wt% Li alloy. Mater. Sci. Eng., A 610, 54 (2014).

    Article  CAS  Google Scholar 

  65. B.M. Morrow, R.J. Mccabe, E.K. Cerreta, and C.N. Tome: In situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall. Mater. Trans. A 45, 36 (2014).

    Article  CAS  Google Scholar 

  66. Z.Z. Shi, Y.D. Zhang, F. Wagner, P.A. Juan, S. Berbenni, L. Capolungo, J.S. Lecomte, and T. Richeton: Variant selection of twins with low Schmid factors in cross grain boundary twin pairs in a magnesium alloy. IOP Conf. Ser.: Mater. Sci. Eng. 82, 012021 (2015).

    Article  CAS  Google Scholar 

  67. N. Stanford, U. Carlson, and M. Barnett: Deformation twinning and the Hall–Petch relation in commercial purity Ti. Metall. Mater. Trans. A 39, 934 (2008).

    Article  CAS  Google Scholar 

  68. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp: Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 63, 827 (2010).

    Article  CAS  Google Scholar 

  69. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall. Mater. Trans. A 41, 421 (2010).

    Article  CAS  Google Scholar 

  70. H.J. Yang, S.M. Yin, C.X. Huang, Z.F. Zhang, S.D. Wu, S.X. Li, and Y.D. Liu: EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv. Eng. Mater. 10, 955 (2008).

    Article  CAS  Google Scholar 

  71. Q. Yu, J. Wang, Y.Y. Jiang, R.J. McCabe, N. Li, and C.N. Tome: Twin-twin interactions in magnesium. Acta Mater. 77, 28 (2014).

    Article  CAS  Google Scholar 

  72. A. Fernández, A. Jérusalem, I. Gutiérrez-Urrutia, and M. Pérez-Prado: Three-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling. Acta Mater. 61, 7679 (2013).

    Article  CAS  Google Scholar 

  73. I.J. Beyerlein and C.N. Tome: A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 24, 867 (2008).

    Article  CAS  Google Scholar 

  74. I.J. Beyerlein, R.J. McCabe, and C.N. Tome: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solids 59, 988 (2011).

    Article  CAS  Google Scholar 

  75. L. Capolungo and I.J. Beyerlein: Nucleation and stability of twins in hcp metals. Phys. Rev. B 78, 024117 (2008).

    Article  CAS  Google Scholar 

  76. I.J. Beyerlein and M. Arul Kumar: The stochastic nature of deformation twinning: Application to HCP materials. In Handbook of Materials Modeling, S. Andreoni and S. Yip, eds. (Springer Nature, Switzerland, 2018).

    Google Scholar 

  77. R.J. McCabe, G. Proust, E.K. Cerreta, and A. Misra: Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 25, 454 (2009).

    Article  CAS  Google Scholar 

  78. A. Khosravani, D.T. Fullwood, B.L. Adams, T.M. Rampton, M.P. Miles, and R.K. Mishra: Nucleation and propagation of \(\left\{ {10\bar 12} \right\}\) twins in AZ31 magnesium alloy. Acta Mater. 100, 202 (2015).

    Article  CAS  Google Scholar 

  79. B. Clausen, C.N. Tome, D.W. Brown, and S.R. Agnew: Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 56, 2456 (2008).

    Article  CAS  Google Scholar 

  80. M.A. Kumar, L. Capolungo, R.J. McCabe, and C.N. Tomé: Characterizing the role of adjoining twins at grain boundaries in hexagonal close packed materials. Sci. Rep. 9, 3846 (2019).

    Article  CAS  Google Scholar 

  81. J. Kacher and A.M. Minor: Twin boundary interactions with grain boundaries investigated in pure rhenium. Acta Mater. 81, 1 (2014).

    Article  CAS  Google Scholar 

  82. B.A. Simkin, B.C. Ng, M.A. Crimp, and T.R. Bieler: Crack opening due to deformation twin shear at grain boundaries in near-gamma TiAl. Intermetallics 15, 55 (2007).

    Article  CAS  Google Scholar 

  83. F. Yang, S.M. Yin, S.X. Li, and Z.F. Zhang: Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Mater. Sci. Eng., A 491, 131 (2008).

    Article  CAS  Google Scholar 

  84. J. Lu, L. Wu, G. Sun, K. Luo, Y. Zhang, J. Cai, C. Cui, and X. Luo: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 127, 252 (2017).

    Article  CAS  Google Scholar 

  85. Q. Yu, Y. Jiang, and J. Wang: Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension–compression in the [100] direction. Scr. Mater. 96, 41 (2015).

    Article  CAS  Google Scholar 

  86. Q. Yu, J. Zhang, and Y. Jiang: Fatigue damage development in pure polycrystalline magnesium under cyclic tension–compression loading. Mater. Sci. Eng. A 528, 7816 (2011).

    Article  CAS  Google Scholar 

  87. M. Gong, S. Xu, Y. Jiang, Y. Liu, and J. Wang: Structural characteristics of \(\left\{ {\bar 1012} \right\}\) non-cozone twin-twin interactions in magnesium. Acta Mater. 159, 65 (2018).

    Article  CAS  Google Scholar 

  88. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I.J. Beyerlein: Strength and ductility with \(\left\{ {1\bar 011} \right\} - \left\{ {1\bar 012} \right\}\) double twinning in a magnesium alloy. Nat. Commun. 7, 11068 (2016).

    Article  CAS  Google Scholar 

  89. F. Mokdad, D.L. Chen, and D.Y. Li: Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy. Mater. Des. 119, 376 (2017).

    Article  CAS  Google Scholar 

  90. Z.Z. Shi, Y.D. Zhang, F. Wagner, T. Richeton, P.A. Juan, J.S. Lecomte, L. Capolungo, and S. Berbenni: Sequential double extension twinning in a magnesium alloy: Combined statistical and micromechanical analyses. Acta Mater. 96, 333 (2015).

    Article  CAS  Google Scholar 

  91. Y. Liu, N. Li, M.A. Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, and C.N. Tome: Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater. 135, 411 (2017).

    Article  CAS  Google Scholar 

  92. J. Ye, R.K. Mishra, A.K. Sachdev, and A.M. Minor: In situ TEM compression testing of Mg and Mg–0.2 wt% Ce single crystals. Scr. Mater. 64, 292 (2011).

    Article  CAS  Google Scholar 

  93. C.C. Aydiner, J.V. Bernier, B. Clausen, U. Lienert, C.N. Tome, and D.W. Brown: Evolution of stress in individual grains and twins in a magnesium alloy aggregate. Phys. Rev. B. 80, 024113 (2009).

    Article  CAS  Google Scholar 

  94. Y. Guo, H. Abdolvand, T.B. Britton, and A.J. Wilkinson: Growth of \(\left\{ {11\bar 22} \right\}\) twins in titanium: A combined experimental and modelling investigation of the local state of deformation. Acta Mater. 126, 221 (2017).

    Article  CAS  Google Scholar 

  95. H. Abdolvand and A. Wilkinson: On the effects of reorientation and shear transfer during twin formation: Comparison between high resolution electron backscatter diffraction experiments and a crystal plasticity finite element model. Int. J. Plast. 84, 160 (2016).

    Article  CAS  Google Scholar 

  96. M. Ardeljan, I. Beyerlein, B. McWilliams, and M. Knezevic: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 90 (2016).

    Article  CAS  Google Scholar 

  97. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, and C.N. Tome: Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mater. Sci. Eng., A 706, 295 (2017).

    Article  CAS  Google Scholar 

  98. M. Ardeljan and M. Knezevic: Explicit modeling of double twinning in AZ31 using crystal plasticity finite elements for predicting the mechanical fields for twin variant selection and fracture analyses. Acta Mater. 157, 339 (2018).

    Article  CAS  Google Scholar 

  99. A.K. Kanjarla, R.A. Lebensohn, L. Balogh, and C.N. Tome: Study of internal lattice strain distributions in stainless steel using a full-field elasto-viscoplastic formulation based on fast Fourier transforms. Acta Mater. 60, 3094 (2012).

    Article  CAS  Google Scholar 

  100. R.A. Lebensohn, A.K. Kanjarla, and P. Eisenlohr: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59 (2012).

    Article  Google Scholar 

  101. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT Press, Cambridge, London, 1971).

    Google Scholar 

  102. U.F. Kocks, C.N. Tomé, and H.R. Wenk: Texture and Anisotropy—Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, Cambridge, UK, 2000); pp. 285–290.

    Google Scholar 

  103. M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, and R.J. McCabe: Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr. Acta Mater. 88, 55 (2015).

    Article  CAS  Google Scholar 

  104. L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, and G.E. Ice: Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline alpha-Ti. Metall. Mater. Trans. A 42, 626 (2011).

    Article  CAS  Google Scholar 

  105. H. Qin, J.J. Jonas, H.B. Yu, N. Brodusch, R. Gauvin, and X.Y. Zhang: Initiation and accommodation of primary twins in high-purity titanium. Acta Mater. 71, 293 (2014).

    Article  CAS  Google Scholar 

  106. M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma: Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 56, 5 (2008).

    Article  CAS  Google Scholar 

  107. C.F. Guo, R.L. Xin, C.H. Ding, B. Song, and Q. Liu: Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor. Mater. Sci. Eng., A 609, 92 (2014).

    Article  CAS  Google Scholar 

  108. Z.Z. Shi, Y.D. Zhang, F. Wagner, P.A. Juan, S. Berbenni, L. Capolungo, J.S. Lecomte, and T. Richeton: On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy. Acta Mater. 83, 17 (2015).

    Article  CAS  Google Scholar 

  109. P.A. Juan, C. Pradalier, S. Berbenni, R.J. McCabe, C.N. Tome, and L. Capolungo: A statistical analysis of the influence of microstructure and twin-twin junctions on twin nucleation and twin growth in Zr. Acta Mater. 95, 399 (2015).

    Article  CAS  Google Scholar 

  110. R.A. Lebensohn and C. Tome: A study of the stress state associated with twin nucleation and propagation in anisotropic materials. Philos. Mag. A 67, 187 (1993).

    Article  Google Scholar 

  111. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  112. N. Ecob and B. Ralph: The effect of grain-size on deformation twinning in a textured zinc alloy. J. Mater. Sci. 18, 2419 (1983).

    Article  CAS  Google Scholar 

  113. A. Ghaderi and M. Barnett: Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 59, 7824 (2011).

    Article  CAS  Google Scholar 

  114. A. Jain, O. Duygulu, D.W. Brown, C.N. Tome, and S.R. Agnew: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater. Sci. Eng., A 486, 545 (2008).

    Article  CAS  Google Scholar 

  115. S. Kang, J.G. Jung, M. Kang, W. Woo, and Y.K. Lee: The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning-induced plasticity steel. Mater. Sci. Eng., A 652, 212 (2016).

    Article  CAS  Google Scholar 

  116. M.A. Kumar, I.J. Beyerlein, and C.N. Tome: Grain size constraints on twin expansion in hexagonal close packed crystals. J. Appl. Phys. 120, 155105 (2016).

    Article  CAS  Google Scholar 

  117. M. Lentz, A. Behringer, C. Fahrenson, I.J. Beyerlein, and W. Reimers: Grain size effects on primary, secondary, and tertiary twin development in Mg–4 wt% Li (−1 wt% Al) alloys. Metall. Mater. Trans. A 45, 4737 (2014).

    Article  CAS  Google Scholar 

  118. X. Liu, N.T. Nuhfer, A.P. Warren, K.R. Coffey, G.S. Rohrer, and K. Barmak: Grain size dependence of the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy based orientation mapping. J. Mater. Res. 30, 528 (2015).

    Article  CAS  Google Scholar 

  119. K.M. Rahman, V.A. Vorontsov, and D. Dye: The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 89, 247 (2015).

    Article  CAS  Google Scholar 

  120. N. Stanford and M.R. Barnett: Fine grained AZ31 produced by conventional thermo-mechanical processing. J. Alloys Compd. 466, 182 (2008).

    Article  CAS  Google Scholar 

  121. M.S. Tsai and C.P. Chang: Grain size effect on deformation twinning in Mg–Al–Zn alloy. Mater. Sci. Technol. 29, 759 (2013).

    Article  CAS  Google Scholar 

  122. M.A. Kumar and I.J. Beyerlein: Influence of plastic properties on the grain size effect on twinning in Ti and Mg. Mater. Sci. Eng., A 771, 138644 (2020).

    Article  CAS  Google Scholar 

  123. R.L. Xin, Y.C. Liang, C.H. Ding, C.F. Guo, B.S. Wang, and Q. Liu: Geometrical compatibility factor analysis of paired extension twins in extruded Mg–3Al–1Zn alloys. Mater. Des. 86, 656 (2015).

    Article  CAS  Google Scholar 

  124. L. Jiang and J.J. Jonas: Effect of twinning on the flow behavior during strain path reversals in two Mg (+Al, Zn, Mn) alloys. Scr. Mater. 58, 803 (2008).

    Article  CAS  Google Scholar 

  125. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet: Influence of \(\left\{ {10\bar 12} \right\}\) extension twinning on the flow behavior of AZ31 Mg alloy. Mater. Sci. Eng., A 445, 302 (2007).

    Article  CAS  Google Scholar 

  126. Q. Yu, J. Wang, Y.Y. Jiang, R.J. McCabe, and C.N. Tome: Co-zone \(\left\{ {\bar 1012} \right\}\) twin interaction in magnesium single crystal. Mater. Res. Lett. 2, 82 (2014).

    Article  CAS  Google Scholar 

  127. M.A. Kumar, M. Gong, I. Beyerlein, J. Wang, and C.N. Tomé: Role of local stresses on co-zone twin-twin junction formation in HCP magnesium. Acta Mater. 168, 353 (2019).

    Article  CAS  Google Scholar 

  128. Q. Sun, X. Zhang, Y. Ren, L. Tan, and J. Tu: Observations on the intersection between \(\left\langle {10\bar 12} \right\rangle \) twin variants sharing the same zone axis in deformed magnesium alloy. Mater. Charact. 109, 160 (2015).

    Article  CAS  Google Scholar 

  129. B.M. Morrow, E.K. Cerreta, R.J. McCabe, and C.N. Tome: Toward understanding twin–twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium. Mater. Sci. Eng., A 613, 365 (2014).

    Article  CAS  Google Scholar 

  130. F. Mokdad, D.L. Chen, and D.Y. Li: Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction. J. Alloys Compd. 737, 549 (2018).

    Article  CAS  Google Scholar 

  131. M. Gong, S. Xu, D. Xie, S. Wang, J. Wang, C. Schuman, and J-S. Lecomte: Steps and \(\left\{ {11\bar 21} \right\}\) secondary twinning associated with \(\left\{ {11\bar 22} \right\}\) twin in titanium. Acta Mater. 164, 776 (2019).

    Article  CAS  Google Scholar 

  132. E. Martin, L. Capolungo, L.A. Jiang, and J.J. Jonas: Variant selection during secondary twinning in Mg–3% Al. Acta Mater. 58, 3970 (2010).

    Article  CAS  Google Scholar 

  133. S.J. Mu, J.J. Jonas, and G. Gottstein: Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 60, 2043 (2012).

    Article  CAS  Google Scholar 

  134. S. Xu, P. Zhou, G. Liu, D. Xiao, M. Gong, and J. Wang: Shock-induced two types of \(\left\{ {10\bar 12} \right\}\) sequential twinning in titanium. Acta Mater. 165, 547 (2019).

    Article  CAS  Google Scholar 

  135. S. Xu, L.S. Toth, C. Schuman, J.S. Lecomte, and M.R. Barnett: Dislocation mediated variant selection for secondary twinning in compression of pure titanium. Acta Mater. 124, 59 (2017).

    Article  CAS  Google Scholar 

  136. L. Bao, C. Schuman, Q.C. Le, J.S. Lecomte, Z.Q. Zhang, M.J. Philippe, J.Z. Cui, and C. Esling: A novel method for predicting variant selection during primary, secondary and tertiary twinning in titanium. Mater. Lett. 132, 162 (2014).

    Article  CAS  Google Scholar 

  137. S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, X. Zhao, and C. Esling: Variant selection criterion for twin variants in titanium alloys deformed by rolling. Acta Mater. 60, 3912 (2012).

    Article  CAS  Google Scholar 

  138. H. Qin and J.J. Jonas: Variant selection during secondary and tertiary twinning in pure titanium. Acta Mater. 75, 198 (2014).

    Article  CAS  Google Scholar 

  139. S. Xu, M. Gong, C. Schuman, J-S. Lecomte, X. Xie, and J. Wang: Sequential twinning stimulated by other twins in titanium. Acta Mater. 132, 57 (2017).

    Article  CAS  Google Scholar 

  140. P. Zhou, S. Xu, D. Xiao, C. Jiang, Y. Hu, and J. Wang: Shock-induced \(\left\{ {11\bar 21} \right\} \to \left\{ {11\bar 22} \right\}\) double twinning in titanium. Int. J. Plast. 112, 194 (2019).

    Article  CAS  Google Scholar 

  141. S. Xu, M. Gong, Y. Jiang, C. Schuman, J-S. Lecomte, and J. Wang: Secondary twin variant selection in four types of double twins in titanium. Acta Mater. 152, 58 (2018).

    Article  CAS  Google Scholar 

  142. D.A. Basha, H. Somekawa, and A. Singh: Crack propagation along grain boundaries and twins in Mg and Mg–0.3 at.% Y alloy during in-situ straining in transmission electron microscope. Scr. Mater. 142, 50 (2018).

    Article  CAS  Google Scholar 

  143. L. Liu, H.C. Wu, J. Wang, S.K. Gong, and S.X. Mao: Twinning-dominated nucleation, propagation and deflection of crack in molybdenum characterized with in situ transmission electron microscopy. Philos. Mag. Lett. 94, 225 (2014).

    Article  CAS  Google Scholar 

  144. D. Xu and E. Han: Relationship between fatigue crack initiation and activated \(\left\{ {10\bar 12} \right\}\) twins in as-extruded pure magnesium. Scr. Mater. 69, 702 (2013).

    Article  CAS  Google Scholar 

  145. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R.J. McCabe, Y. Jiang, and C.N. Tomé: Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 7, 11577 (2016).

    Article  CAS  Google Scholar 

  146. Y. Liu, P.Z. Tang, M.Y. Gong, R.J. McCabe, J. Wang, and C.N. Tomé: Three dimensional character of \(\left\{ {1\bar 012} \right\}\) deformation twin in Mg. Nat. Commun. 10, 3308 (2019).

    Article  CAS  Google Scholar 

  147. M. Gong, G. Liu, J. Wang, L. Capolungo, and C.N. Tomé: Atomistic simulations of interaction between basal 〈a〉 dislocations and three-dimensional twins in magnesium. Acta Mater. 155, 187 (2018).

    Article  CAS  Google Scholar 

  148. J.H. Cheng and S. Ghosh: A crystal plasticity FE model for deformation with twin nucleation in magnesium alloys. Int. J. Plast. 67, 148 (2015).

    Article  CAS  Google Scholar 

  149. L. Jiang, M.A. Kumar, I.J. Beyerlein, X. Wang, D. Zhang, C. Wu, C. Cooper, T.J. Rupert, S. Mahajan, E.J. Lavernia, and J.M. Schoenung: Twin formation from a twin boundary in Mg during in-situ nanomechanical testing. Mater. Sci. Eng. A 759, 142 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.A.K. acknowledges financial support from US Department of Energy, Office of Basic Energy Sciences (OBES) (FWP-06SCPE401). I.J.B. acknowledges financial support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) program (NSF CMMI-1729887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariyappan Arul Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.A., Beyerlein, I.J. Local microstructure and micromechanical stress evolution during deformation twinning in hexagonal polycrystals. Journal of Materials Research 35, 217–241 (2020). https://doi.org/10.1557/jmr.2020.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.14

Navigation