Skip to main content
Log in

Crystal growth and structural analysis of perovskite chalcogenide BaZrS3 and Ruddlesden–Popper phase Ba3Zr2S7

  • Functional Materials
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS3 and its Ruddlesden–Popper phase Ba3Zr2S7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS3 and P42/mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba3Zr2S7. Rocking curves with full width at half maximum of 0.011° for BaZrS3 and 0.027° for Ba3Zr2S7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Y-Y. Sun, M.L. Agiorgousis, P. Zhang, and S. Zhang: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581 (2015).

    Article  CAS  Google Scholar 

  2. H. Wang, G. Gou, and J. Li: Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507 (2016).

    Article  CAS  Google Scholar 

  3. K. Kuhar, A. Crovetto, M. Pandey, K.S. Thygesen, B. Seger, P.C.K. Vesborg, O. Hansen, I. Chorkendorff, and K.W. Jacobsen: Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017).

    Article  CAS  Google Scholar 

  4. M-G. Ju, J. Dai, L. Ma, and X.C. Zeng: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 48, 1700216 (2017).

    Article  Google Scholar 

  5. S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, and J. Ravichandran: Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 12, 392 (2018).

    Article  CAS  Google Scholar 

  6. S. Niu, D. Sarkar, K. Williams, Y. Zhou, Y. Li, E. Bianco, H. Huyan, S.B. Cronin, M.E. McConney, R. Haiges, R. Jaramillo, D.J. Singh, W.A. Tisdale, R. Kapadia, and J. Ravichandran: Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882 (2018).

    Article  CAS  Google Scholar 

  7. S.A. Filippone, Y-Y. Sun, and R. Jaramillo: Determination of adsorption-controlled growth windows of chalcogenide perovskites. MRS Commun. 8, 145 (2018).

    Article  CAS  Google Scholar 

  8. S. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S.B. Cronin, H. Wang, and J. Ravichandran: Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30, 4897 (2018).

    Article  CAS  Google Scholar 

  9. K. Hanzawa, S. Iimura, H. Hiramatsu, and H. Hosono: Material design of green-light-emitting semiconductors: Perovskite-type sulfide SrHfS3. J. Am. Chem. Soc. 141, 5343 (2019).

    Article  CAS  Google Scholar 

  10. A. Swarnkar, W.J. Mir, R. Chakraborty, M. Jagadeeswararao, T. Sheikh, and A. Nag: Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem. Mater. 31, 565 (2019).

    Article  CAS  Google Scholar 

  11. J.W. Bennett, I. Grinberg, and A.M. Rappe: Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).

    Article  Google Scholar 

  12. H. Hahn and U. Mutschke: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269 (1957).

    Article  Google Scholar 

  13. A. Clearfield: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 16, 135 (1963).

    Article  CAS  Google Scholar 

  14. R. Lelieveld and D.J.W. Ijdo: Sulphides with the GdFeO3 structure. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2223 (1980).

    Article  Google Scholar 

  15. J. Huster: Die Kristallstruktur von BaTiS3. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 35, 775 (1980).

    Article  Google Scholar 

  16. C-S. Lee, K.M. Kleinke, and H. Kleinke: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049 (2005).

    Article  CAS  Google Scholar 

  17. B. Okai, K. Takahashi, M. Saeki, and J. Yoshimoto: Preparation and crystal structures of some complex sulphides at high pressures. Mater. Res. Bull. 23, 1575 (1988).

    Article  CAS  Google Scholar 

  18. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, and J. Ravichandran: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).

    Article  Google Scholar 

  19. Y.C. Hung, J.C. Fettinger, and B.W. Eichhorn: Ba3Zr2S7, the low-temperature polymorph. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 53, 827 (1997).

    Article  Google Scholar 

  20. B.H. Chen, B. Eichhorn, and W. Wong-Ng: Structural reinvestigation of Ba3Zr2S7 by single-crystal X-ray diffraction. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50, 161 (1994).

    Article  Google Scholar 

  21. B-H. Chen, W. Wong-Ng, and B.W. Eichhorn: Preparation of new Ba4M3S10 phases (M = Zr, Hf) and single crystal structure determination of Ba4Zr3S10. J. Solid State Chem. 103, 75 (1993).

    Article  CAS  Google Scholar 

  22. W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, and Y. Yan: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821 (2016).

    Article  CAS  Google Scholar 

  23. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y-Y. Sun, S. Zhang, and H. Zeng: Chalcogenide perovskites: An emerging class of ionic semiconductors. Nano Energy 22, 129 (2016).

    Article  CAS  Google Scholar 

  24. N. Gross, Y-Y. Sun, S. Perera, H. Hui, X. Wei, S. Zhang, H. Zeng, and B.A. Weinstein: Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys. Rev. Appl. 8, 044014 (2017).

    Article  Google Scholar 

  25. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, and J. Ravichandran: Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4135 (2018).

    Article  CAS  Google Scholar 

  26. P.M. Woodward: Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B53, 32–43 (1997).

    Article  CAS  Google Scholar 

  27. M. Saeki, Y. Yajima, and M. Onoda: Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7. J. Solid State Chem. 92, 286 (1991).

    Article  CAS  Google Scholar 

  28. F. Bachmann, R. Hielscher, and H. Schaeben: Texture and Anisotropy of Polycrystals III, Solid State Phenomena, Vol. 160 (Trans Tech Publications Ltd., Zurich, 2010); pp. 63–68.

    Google Scholar 

  29. G.M. Sheldrick: A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 112 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.R., S.N., and B.Z. acknowledge the Air Force Office of Scientific Research under award number FA9550-16-1-0335 and Army Research Office under award number W911NF-19-1-0137. S.N. acknowledges the Link Foundation Energy Fellowship. R.J. and K.Y. acknowledge support from the National Science Foundation under contract No. 1751736, “CAREER: Fundamentals of Complex Chalcogenide Electronic Materials”. M.E.M. and E.B. acknowledge support by the Air Force Office of Scientific Research under award number FA9550-15RXCOR198. E.B. acknowledges the National Science Foundation Graduate Research Fellowship under grant No. DGE-1450681. The authors gratefully acknowledge the use of facilities at the Core Center of Excellence in Nano Imaging at University of Southern California and the use of facilities and instrumentation supported by NSF through the Massachusetts Institute of Technology Materials Research Science and Engineering Center DMR-1419807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayakanth Ravichandran.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Zhao, B., Ye, K. et al. Crystal growth and structural analysis of perovskite chalcogenide BaZrS3 and Ruddlesden–Popper phase Ba3Zr2S7. Journal of Materials Research 34, 3819–3826 (2019). https://doi.org/10.1557/jmr.2019.348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.348

Navigation