Skip to main content
Log in

Effect of aging on the corrosion behavior of 6005 Al alloys in 3.5 wt% NaCl aqueous solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of aging time on the corrosion behavior of 6005 Al alloys has been investigated in aerated 3.5% NaCl aqueous solution. The corrosion resistance of the alloy with different aging times is analyzed by measuring potentiodynamic polarization, electrochemical impedance spectroscopy. The surface morphology is examined by scanning electron microscopy. The results demonstrated that the corrosion resistance of the alloy in the peak-aged condition is worse than the other conditions. Accordingly, corrosion rate and the corrosion current density of the alloy reach its maximum value. An Fe-rich phase is identified as the β-Al4.5FeSi phase by atomic-resolution high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy mapping analyses. The β-Al4.5FeSi is wrapped slowly by the precipitates of Mg2Si from the process of the peak-aged condition to the over-aged condition. It is hypothesized that the change of corrosion behavior of the alloy may be attributed to the β-Al4.5FeSi wrapped slowly by the precipitates of Mg2Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A.M. Abdel-Gaber, B.A. Abd-El-Nabey, I.M. Sidahmed, A.M. El-Zayady, and M. Saadawy: Kinetics and thermodynamics of aluminium dissolution in 1.0 M sulphuric acid containing chloride ions. Mater. Chem. Phys. 98, 291 (2006).

    Article  CAS  Google Scholar 

  2. R. Rosliza, W.B.W. Nik, S. Izman, and Y. Prawoto: Anti-corrosive properties of natural honey on Al–Mg–Si alloy in seawater. Curr. Appl. Phys. 10, 923 (2010).

    Article  Google Scholar 

  3. R. Rosliza and W.B.W. Nik: Improvement of corrosion resistance of AA6061 alloy by tapioca starch in seawater. Curr. Appl. Phys. 10, 221 (2010).

    Article  Google Scholar 

  4. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998).

    Article  CAS  Google Scholar 

  5. W.F. Miao and D.E. Laughlin: Precipitation hardening in aluminum alloy 6022. Scr. Mater. 40, 873 (1999).

    Article  CAS  Google Scholar 

  6. G. Birolia, G. Cagliotiab, L. Martini, and G. Riontino: Precipitation kinetics of AA4032 and AA6082: A comparison based on DSC and TEM. Scr. Mater. 39, 197 (1998).

    Article  Google Scholar 

  7. G. Mrówkanowotnik: Influence of precipitation strenghtening process on tensile and fracture behaviour of the 6005 and 6082 alloys. Int. J. Adv. Manuf. Technol. 32, 31 (2008).

    Google Scholar 

  8. B. Chen, C.H. Li, S.C. He, X. Li, and C. Lu: Corrosion behavior of 2099 Al–Li alloy in NaCl aqueous solution. J. Mater. Res. 29, 1344 (2014).

    Article  CAS  Google Scholar 

  9. A. Prabhukhot: Effect of heat treatment on hardness and corrosion behavior of 6082-T6 aluminium alloy in artificial sea water. Int. J. Mater. Sci. Eng. 3, 287 (2015).

    Google Scholar 

  10. R. Braun: Investigation on microstructure and corrosion behaviour of 6XXX series aluminium alloys. Mater. Sci. Forum 519, 735 (2006).

    Article  Google Scholar 

  11. Y. Zou, X. Chen, and B. Chen: Influence of interactions between β′ precipitates and long period stacking ordered structures on corrosion behaviors of Mg–10Gd–5Y–2Zn–0.5Zr (wt%) alloy. J. Mater. Res. 33, 745 (2018).

    Article  CAS  Google Scholar 

  12. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, and A. Garcia: Corrosion resistance of directionally solidified Al–6Cu–1Si and Al–8Cu–3Si alloys castings. Mater. Des. 32, 3832 (2011).

    Article  Google Scholar 

  13. X.L. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, and Z.D. Wu: Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 51, 581 (2009).

    Article  CAS  Google Scholar 

  14. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50, 1841 (2008).

    Article  CAS  Google Scholar 

  15. W.R. Osório, L.C. Peixoto, P.R. Goulart, and A. Garcia: Electrochemical corrosion parameters of as-cast Al–Fe alloys in a NaCl solution. Corros. Sci. 52, 2979 (2010).

    Article  Google Scholar 

  16. J.R. Davis: Corrosion of Aluminum and Aluminum Alloys (ASM International, Geauga County, 1999).

    Book  Google Scholar 

  17. M.A. Jingling, J. Wen, L.I. Gengxin, and X.V. Chunhua: The corrosion behaviour of Al–Zn–In–Mg–Ti alloy in NaCl solution. Corros. Sci. 52, 534 (2010).

    Article  Google Scholar 

  18. F.M. Reis, H.G.D. Melo, and I. Costa: EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer. Electrochim. Acta 51, 1780 (2006).

    Article  CAS  Google Scholar 

  19. R.M. Souto, L. Fernández-Mérida, S. González, and D.J. Scantlebury: Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels. Corros. Sci. 48, 1182 (2006).

    Article  CAS  Google Scholar 

  20. S.S. Zhang and T.R. Jow: Aluminum corrosion in electrolyte of Li-ion battery. J. Power Sources 109, 458 (2002).

    Article  CAS  Google Scholar 

  21. T. Hong, Y.H. Sun, and W.P. Jepson: Study on corrosion inhibitor in large pipelines under multiphase flow using EIS. Corros. Sci. 44, 101 (2002).

    Article  CAS  Google Scholar 

  22. A.V.C. Sobral, W. Ristow, Jr., D.S. Azambuja, I. Costa, and C.V. Franco: Potentiodynamic tests and electrochemical impedance spectroscopy of injection molded 316L steel in NaCl solution. Corros. Sci. 43, 1019 (2001).

    Article  CAS  Google Scholar 

  23. F.L. Zeng, Z.L. Wei, L.I. Jin-Feng, L.I. Chao-Xing, X. Tan, Z. Zhang, and Z.Q. Zheng: Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Metals Soc. China 21, 2559 (2011).

    Article  CAS  Google Scholar 

  24. D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, and B.C. Muddle: Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance. Corros. Sci. 53, 217 (2011).

    Article  CAS  Google Scholar 

  25. S.D. Wang, D.K. Xu, B.J. Wang, E.H. Han, and C. Dong: Effect of corrosion attack on the fatigue behavior of an as-cast Mg–7% Gd–5% Y–1% Nd–0.5% Zr alloy. Mater. Des. 84, 185 (2015).

    Article  CAS  Google Scholar 

  26. S.J. Yuan and S.O. Pehkonen: Surface characterization and corrosion behavior of 70/30 Cu–Ni alloy in pristine and sulfide-containing simulated seawater. Corros. Sci. 49, 1276 (2007).

    Article  CAS  Google Scholar 

  27. C. Rømming, V. Hansen, and J. Gjønnes: Crystal structure of β-Al4.5FeSi. Acta Crystallogr. B 50, 307 (1994).

    Article  Google Scholar 

  28. Z. Nikseresht, F. Karimzadeh, M. Golozar, and M. Heidarbeigy: Effect of heat treatment on microstructure and corrosion behavior of Al6061 alloy weldment. Mater. Des. 31, 2643 (2010).

    Article  CAS  Google Scholar 

  29. K.A. Yasakau, M.L. Zheludkevich, S.V. Lamaka, and M.G. Ferreira: Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 52, 7651 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research is supported by open fund of the State Key Laboratory of Refractories and Metallurgy (Grant No. G201702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, X. & Chen, B. Effect of aging on the corrosion behavior of 6005 Al alloys in 3.5 wt% NaCl aqueous solution. Journal of Materials Research 33, 1830–1838 (2018). https://doi.org/10.1557/jmr.2018.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.86

Navigation