Skip to main content
Log in

Single-pot biofabrication of living fibers for tissue engineering applications

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, morphology, viability, and metabolism of the amniotic mesenchymal stem cells conditioned with different citric acid (CA)/media ratios were investigated using rhodamine-phalloidin/4′,6-diamidino-2-phenylindole staining, live/dead assay, proliferating cell nuclear antigen, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay). The cells cultured in 25:75 CA/media displayed well spread actin filaments with a prominent nucleus and evidenced optimum viability. The gelation kinetics of chitosan solution in CA/media (25:75) was monitored via dynamic time sweep analysis on a rheometer. The chemical cross-linking of chitosan with CA was confirmed by nuclear magnetic resonance studies. Subsequently, chitosan solution was extruded in CA/media bath containing cells under benign conditions to form cell-laden fibers (living fibers). The prelabeled cells imaged immediately after fiber formation confirmed the attachment of the cells on the fibers. This approach has several advantages including instantaneous gelation, tunable mechanical properties, and adjustable biodegradability that can provide a platform technology for creating viable three dimensional (3D) building blocks for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D.J. Mooney and A.G. Mikos: Growing new organs. Sci. Am. 280, 60 (1999).

    Article  CAS  Google Scholar 

  2. S.D. McCullen, H. Autefage, A. Callanan, E. Gentleman, and M.M. Stevens: Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng., Part A 18, 2073 (2012).

    Article  CAS  Google Scholar 

  3. A.M. Jordan, S.E. Kim, K. Van de Voorde, J.K. Pokorski, and L.T.J. Korley: In situ fabrication of fiber reinforced three-dimensional hydrogel tissue engineering scaffolds. ACS Biomater. Sci. Eng. 3, 1869 (2017).

    Article  CAS  Google Scholar 

  4. A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, and D. Juncker: Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol. Adv. 31, 669 (2013).

    Article  CAS  Google Scholar 

  5. Y. Jun, E. Kang, S. Chae, and S.H. Lee: Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 14, 2145 (2014).

    Article  CAS  Google Scholar 

  6. W. Liu, S. Thomopoulos, and Y. Xia: Electrospun nanofibers for regenerative medicine. Adv. Healthcare Mater. 1, 10 (2012).

    Article  CAS  Google Scholar 

  7. J.W. Freeman, M.D. Woods, D.A. Cromer, L.D. Wright, and C.T. Laurencin: Tissue engineering of the anterior cruciate ligament: The viscoelastic behavior and cell viability of a novel braid–twist scaffold. J. Biomater. Sci., Polym. Ed. 20, 1709 (2012).

    Article  Google Scholar 

  8. S.N. Jayasinghe: Cell electrospinning: A novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 138, 2215 (2013).

    Article  CAS  Google Scholar 

  9. A. Lopez-Rubio, E. Sanchez, Y. Sanz, and J.M. Lagaron: Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules 10, 2823 (2009).

    Article  CAS  Google Scholar 

  10. B. Ram Lee, K.H. Lee, E. Kang, D-S. Kim, and S-H. Lee: Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 5, 022208 (2011).

    Article  Google Scholar 

  11. S.J. Shin, J.Y. Park, J.Y. Lee, H. Park, Y.D. Park, K.B. Lee, C.M. Whang, and S.H. Lee: “On the fly” Continuous generation of alginate fibers using a microfluidic device. Langmuir 23, 9104 (2007).

    Article  CAS  Google Scholar 

  12. M. Liu, Z. Zhou, Y. Chai, S. Zhang, X. Wu, S. Huang, J. Su, and J. Jiang: Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Biofabrication 9, 025030 (2017).

    Article  Google Scholar 

  13. F.Y. Hsieh, H.H. Lin, and S.H. Hsu: 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71, 48 (2015).

    Article  CAS  Google Scholar 

  14. R. Levato, J. Visser, J.A. Planell, E. Engel, J. Malda, and M.A. Mateos-Timoneda: Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6, 035020 (2014).

    Article  CAS  Google Scholar 

  15. P. Ghosh, A.P. Rameshbabu, D. Das, N.K. Francis, H.S. Pawar, B. Subramanian, S. Pal, and S. Dhara: Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model. Colloids Surf., B 125, 160 (2014).

    Article  Google Scholar 

  16. F. Alviano, V. Fossati, C. Marchionni, M. Arpinati, L. Bonsi, M. Franchina, G. Lanzoni, S. Cantoni, C. Cavallini, F. Bianchi, P.L. Tazzari, G. Pasquinelli, L. Foroni, C. Ventura, A. Grossi, and G.P. Bagnara: Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev. Biol. 7, 11 (2007).

    Article  Google Scholar 

  17. A.P. Rameshbabu, P. Ghosh, E. Subramani, K. Bankoti, K. Kapat, S. Datta, P.P. Maity, B. Subramanian, S. Roy, K. Chaudhury, and S. Dhara: Investigating the potential of human placenta-derived extracellular matrix sponges coupled with amniotic membrane-derived stem cells for osteochondral tissue engineering. J. Mater. Chem. B 4, 613 (2016).

    Article  CAS  Google Scholar 

  18. P. Ghosh, A.P. Rameshbabu, N. Dogra, and S. Dhara: 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Adv. 4, 19516 (2014).

    Article  CAS  Google Scholar 

  19. P. Ghosh, M. Das, A.P. Rameshbabu, D. Das, S. Datta, S. Pal, A.B. Panda, and S. Dhara: Chitosan derivatives cross-linked with iodinated 2,5-dimethoxy-2,5-dihydrofuran for non-invasive imaging. ACS Appl. Mater. Interfaces 6, 17926 (2014).

    Article  CAS  Google Scholar 

  20. P. Ghosh, A.P. Rameshbabu, and S. Dhara: Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model. Langmuir 30, 8442 (2014).

    Article  CAS  Google Scholar 

  21. S. Díaz-Prado, E. Muiños-López, T. Hermida-Gómez, M.E. Rendal-Vázquez, I. Fuentes-Boquete, F.J. de Toro, and F.J. Blanco: Isolation and characterization of mesenchymal stem cells from human amniotic membrane. Tissue Eng., Part C 17, 49 (2011).

    Article  Google Scholar 

  22. H. Niwa, S. Masui, I. Chambers, A.G. Smith, and J. Miyazaki: Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526 (2002).

    Article  CAS  Google Scholar 

  23. I. Chambers, D. Colby, and M. Robertson: Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643 (2003).

    Article  CAS  Google Scholar 

  24. D. Terada, H. Kobayashi, K. Zhang, A. Tiwari, C. Yoshikawa, and N. Hanagata: Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions. Sci. Technol. Adv. Mater. 13, 15003 (2012).

    Article  Google Scholar 

  25. C.L. Murphy and A. Sambanis: Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 7, 791 (2001).

    Article  CAS  Google Scholar 

  26. V.B. Maciel, C.M. Yoshida, and T.T. Franco: Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr. Polym. 132, 537 (2015).

    Article  CAS  Google Scholar 

  27. A. Oryan and S. Sahvieh: Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Biol. Macromol. 104, 1003 (2017).

    Article  CAS  Google Scholar 

  28. P. Manivasagan and J. Oh: Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 82, 315 (2016).

    Article  CAS  Google Scholar 

  29. T. Jiang, M. Deng, R. James, L.S. Nair, and C.T. Laurencin: Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomater. 10, 1632 (2014).

    Article  CAS  Google Scholar 

  30. S.M. Mihaila, E.G. Popa, R.L. Reis, A.P. Marques, and M.E. Gomes: Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules 15, 2849 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Fellowship from Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), Govt. of India to P.G. and A.P.R. is acknowledged. Financial support from CSIR, DST, Department of Biotechnology, and Defense Research and Development Organization, (Govt. of India) are acknowledged. Dr. Asit Baran Panda is acknowledged for his help in NMR studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paulomi Ghosh or Santanu Dhara.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, P., Rameshbabu, A.P., Das, D. et al. Single-pot biofabrication of living fibers for tissue engineering applications. Journal of Materials Research 33, 2019–2028 (2018). https://doi.org/10.1557/jmr.2018.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.143

Navigation