Skip to main content
Log in

Room temperature deformation mechanisms of Mg/Nb nanolayered composites

  • Invited Feature Paper — Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the deformation mechanisms underlying the room temperature deformation of the pseudomorphic body centered cubic (BCC) Mg phase in Mg/Nb nanolayered composites are studied. Nanolayered composites comprised of 50% volume fraction of Mg and Nb were synthesized using physical vapor deposition with the individual layer thicknesses h of 5, 6.7, and 50 nm. At the lower layer thicknesses of h = 5 and 6.7 nm, Mg has undergone a phase transition from HCP to BCC such that it formed a coherent interface with the adjoining Nb phase. Micropillar compression testing normal and parallel to the interface plane shows that the BCC Mg nanolayered composite is much stronger and can sustain higher strains to failure than the HCP Mg nanolayered composite. A crystal plasticity model incorporating confined layer slip is presented and applied to link the observed anisotropy and hardening in the deformation response to the underlying slip mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. D. Van Heerden, D. Josell, and D. Shechtman: The formation of f.c.c. titanium in titanium–aluminum multilayers. Acta Mater. 44, 297 (1996).

    Article  Google Scholar 

  2. R. Banerjee, X.D. Zhang, S.A. Dregia, and H.L. Fraser: Phase stability in Al/Ti multilayers. Acta Mater. 47, 1153 (1999).

    Article  CAS  Google Scholar 

  3. H. Wormeester, E. Hüger, and E. Bauer: Hcp and bcc Cu and Pd films. Phys. Rev. Lett. 77, 1540 (1996).

    Article  CAS  Google Scholar 

  4. J.Q. Zheng, J.B. Ketterson, and G.P. Felcher: Synthesis of layered crystals of titanium silver. J. Appl. Phys. 53, 3624 (1982).

    Article  CAS  Google Scholar 

  5. R. Ahuja and H.L. Fraser: Microstructural transitions in titanium–aluminum thin film multilayers. J. Electron. Mater. 23, 1027 (1994).

    Article  CAS  Google Scholar 

  6. R. Banerjee, R. Ahuja, and H.L. Fraser: Dimensionally induced structural transformations in titanium–aluminum multilayers. Phys. Rev. Lett. 76, 3778 (1996).

    Article  CAS  Google Scholar 

  7. J. Chakraborty, K. Kumar, R. Ranjan, S.G. Chowdhury, and S.R. Singh: Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59, 2615 (2011).

    Article  CAS  Google Scholar 

  8. S.A. Dregia, R. Banerjee, and H.L. Fraser: Polymorphic phase stability in thin multilayers. Scr. Mater. 39, 217 (1998).

    Article  CAS  Google Scholar 

  9. W.P. Lowe and T.H. Geballe: NbZr multilayers. I. Structure and superconductivity. Phys. Rev. B 29, 4961 (1984).

    Article  CAS  Google Scholar 

  10. J.Y. Zhang, P. Zhang, X. Zhang, R.H. Wang, G. Liu, G.J. Zhang, and J. Sun: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng., A 545, 118 (2012).

    Article  CAS  Google Scholar 

  11. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  12. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).

    Article  CAS  Google Scholar 

  13. M.A. Monclús, S.J. Zheng, J.R. Mayeur, I.J. Beyerlein, N.A. Mara, T. Polcar, J. Llorca, and J.M. Molina-Aldareguía: Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 1, 052103 (2013).

    Article  CAS  Google Scholar 

  14. J. Snel, M.A. Monclús, M. Castillo-Rodríguez, N. Mara, I.J. Beyerlein, J. Llorca, and J.M. Molina-Aldareguía: Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. JOM 69, 239–259 (2017).

    Article  CAS  Google Scholar 

  15. J.Y. Zhang, S. Lei, Y. Liu, J.J. Niu, Y. Chen, G. Liu, X. Zhang, and J. Sun: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater. 60, 1610 (2012).

    Article  CAS  Google Scholar 

  16. R. Raghavan, J.M. Wheeler, T.P. Harzer, V. Chawla, S. Djaziri, K. Thomas, B. Philippi, C. Kirchlechner, B.N. Jaya, J. Wehrs, J. Michler, and G. Dehm: Transition from shear to stress-assisted diffusion of copper–chromium nanolayered thin films at elevated temperatures. Acta Mater. 100, 73 (2015).

    Article  CAS  Google Scholar 

  17. N.A. Mara and I.J. Beyerlein: Interface-dominant multilayers fabricated by severe plastic deformation: Stability under extreme conditions. Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).

    Article  CAS  Google Scholar 

  18. N.A. Mara, D. Bhattacharyya, R.G. Hoagland, and A. Misra: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).

    Article  CAS  Google Scholar 

  19. W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975 (2013).

    Article  CAS  Google Scholar 

  20. W.Z. Han, A. Misra, N.A. Mara, T.C. Germann, J.K. Baldwin, T. Shimada, and S.N. Luo: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172 (2011).

    Article  CAS  Google Scholar 

  21. A. Misra, R.G. Hoagland, and H. Kung: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).

    Article  CAS  Google Scholar 

  22. A. Misra and R.G. Hoagland: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046 (2005).

    Article  CAS  Google Scholar 

  23. M. Knezevic and D.J. Savage: A high-performance computational framework for fast crystal plasticity simulations. Comput. Mater. Sci. 83, 101 (2014).

    Article  Google Scholar 

  24. S. Subedi, I.J. Beyerlein, R. LeSar, and A.D. Rollett: Strength of nanoscale metallic multilayers. Scr. Mater. (2017).

  25. S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, and I.J. Beyerlein: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).

    Article  CAS  Google Scholar 

  26. N. Li, J. Wang, A. Misra, and J.Y. Huang: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).

    Article  CAS  Google Scholar 

  27. N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra: Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67, 479 (2012).

    Article  CAS  Google Scholar 

  28. K. Hattar, A. Misra, M.R.F. Dosanjh, P. Dickerson, I.M. Robertson, and R.G. Hoagland: Direct observation of crack propagation in copper–niobium multilayers. J. Eng. Mater. Technol. 134, 021014 (2012).

    Article  CAS  Google Scholar 

  29. S. Pathak, N. Velisavljevic, J.K. Baldwin, M. Jain, S. Zheng, N.A. Mara, and I.J. Beyerlein: Strong, ductile, and thermally stable bcc-Mg nanolaminates. Sci. Rep. 7, 8264 (2017).

    Article  CAS  Google Scholar 

  30. B.L. Mordike and T. Ebert: Magnesium: Properties–applications–potential. Mater. Sci. Eng., A 302, 37 (2001).

    Article  Google Scholar 

  31. T.M. Pollock: Weight loss with magnesium alloys. Science 328, 986 (2010).

    Article  CAS  Google Scholar 

  32. I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J. Mech. Phys. Solid. 59, 988 (2011).

    Article  CAS  Google Scholar 

  33. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009).

    Article  CAS  Google Scholar 

  34. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M. Knezevic: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy. Int. J. Plast. 83, 90 (2016).

    Article  CAS  Google Scholar 

  35. E. Kelley and W. Hosford: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5 (1968).

    CAS  Google Scholar 

  36. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions. Int. J. Plast. 68, 1 (2015).

    Article  CAS  Google Scholar 

  37. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra: Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 27, 688 (2011).

    Article  CAS  Google Scholar 

  38. K. Ishikawa, H. Watanabe, and T. Mukai: High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater. Lett. 59, 1511 (2005).

    Article  CAS  Google Scholar 

  39. H. Watanabe and K. Ishikawa: Effect of texture on high temperature deformation behavior at high strain rates in a Mg–3Al–1Zn alloy. Mater. Sci. Eng., A 523, 304 (2009).

    Article  CAS  Google Scholar 

  40. M. Arul Kumar, I.J. Beyerlein, and C.N. Tomé: A measure of plastic anisotropy for hexagonal close packed metals: Application to alloying effects on the formability of Mg. J. Alloys Compd. 695, 1488 (2017).

    Article  CAS  Google Scholar 

  41. M. Arul Kumar, I.J. Beyerlein, R.A. Lebensohn, and C.N. Tomé: Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mater. Sci. Eng., A 706, 295 (2017).

    Article  CAS  Google Scholar 

  42. A. Junkaew, B. Ham, X. Zhang, and R. Arróyave: Tailoring the formation of metastable Mg through interfacial engineering: A phase stability analysis. Calphad 45, 145 (2014).

    Article  CAS  Google Scholar 

  43. A. Kumar, I.J. Beyerlein, and J. Wang: First-principles study of the structure of Mg/Nb multilayers. Appl. Phys. Lett. 105, 071602 (2014).

    Article  CAS  Google Scholar 

  44. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int. J. Plast. 30–31, 41 (2012).

    Article  CAS  Google Scholar 

  45. R. Hielscher and H. Schaeben: A novel pole figure inversion method: Specification of the MTEX algorithm. J. Appl. Crystallogr. 41, 1024 (2008).

    Article  CAS  Google Scholar 

  46. B. Ham and X. Zhang: High strength Mg/Nb nanolayer composites. Mater. Sci. Eng., A 528, 2028 (2011).

    Article  CAS  Google Scholar 

  47. A. Junkaew, B. Ham, X. Zhang, A. Talapatra, and R. Arróyave: Stabilization of bcc Mg in thin films at ambient pressure: Experimental evidence and ab initio calculations. Mater. Res. Lett. 1, 161 (2013).

    Article  CAS  Google Scholar 

  48. Y. Chen, S. Shao, X.Y. Liu, S.K. Yadav, N. Li, N. Mara, and J. Wang: Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater. 126, 552 (2017).

    Article  CAS  Google Scholar 

  49. K.M. Youssef, Y.B. Wang, X.Z. Liao, S.N. Mathaudhu, L.J. Kecskés, Y.T. Zhu, and C.C. Koch: High hardness in a nanocrystalline Mg97Y2Zn1 alloy. Mater. Sci. Eng., A 528, 7494 (2011).

    Article  CAS  Google Scholar 

  50. E.N. Popova, V.V. Popov, E.P. Romanov, and V.P. Pilyugin: Thermal stability of nanocrystalline Nb produced by severe plastic deformation. Phys. Met. Metallogr. 101, 52 (2006).

    Article  Google Scholar 

  51. H. Yu, Y. Xin, M. Wang, and Q. Liu: Hall–Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 34, 248 (2018).

    Article  Google Scholar 

  52. F.E. Hauser, P.R. Landon, and J.E. Dorn: Fracture of magnesium alloys at low temperature. Trans. Am. Inst. Min. Metall. Eng. 48, 589 (1956).

    Google Scholar 

  53. N. Ono, R. Nowak, and S. Miura: Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58, 39 (2004).

    Article  CAS  Google Scholar 

  54. Z.C. Cordero, B.E. Knight, and C.A. Schuh: Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495 (2016).

    Article  CAS  Google Scholar 

  55. Y. Gao and H. Bei: Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog. Mater. Sci. 82, 118 (2016).

    Article  CAS  Google Scholar 

  56. J.A. El-Awady, C. Woodward, D.M. Dimiduk, and N.M. Ghoniem: Effects of focused ion beam induced damage on the plasticity of micropillars. Phys. Rev. B 80, 104104 (2009).

    Article  CAS  Google Scholar 

  57. Q. Yu, L. Qi, R.K. Mishra, J. Li, and A.M. Minor: Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Natl. Acad. Sci. U.S.A. 110, 13289 (2013).

    Article  CAS  Google Scholar 

  58. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in bulk nanocrystalline metals: Experimental observations. JOM 60, 60 (2008).

    Article  CAS  Google Scholar 

  59. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I.J. Beyerlein: Strength and ductility with \(\left\{ {10\bar 11} \right\} - \left\{ {10\bar 12} \right\}\) double twinning in a magnesium alloy. Nat. Commun. 7, 11068 (2016)

    Article  CAS  Google Scholar 

  60. T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, and T.M. Pollock: Enhanced plasticity via kinking in cubic metallic nanolaminates. Adv. Eng. Mater. 17, 781 (2015).

    Article  CAS  Google Scholar 

  61. T.J. Nizolek, M.R. Begley, R.J. McCabe, J.T. Avallone, N.A. Mara, I.J. Beyerlein, and T.M. Pollock: Strain fields induced by kink band propagation in Cu–Nb nanolaminate composites. Acta Mater. 133, 303 (2017).

    Article  CAS  Google Scholar 

  62. R. Zhang, J. Wang, I. Beyerlein, and T. Germann: Twinning in bcc metals under shock loading: A challenge to empirical potentials. Philos. Mag. Lett. 91, 731 (2011).

    Article  CAS  Google Scholar 

  63. A. Kumar, B.M. Morrow, R.J. McCabe, and I.J. Beyerlein: An atomic-scale modeling and experimental study of 〈c + a〉 dislocations in Mg. Mater. Sci. Eng., A 695, 270 (2017).

    Article  CAS  Google Scholar 

  64. G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras: Generalized stacking fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099 (2000).

    Article  CAS  Google Scholar 

  65. V. Vítek: Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773 (1968).

    Article  Google Scholar 

  66. J. Frenkel: Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper. Z. Phys. 37, 572 (1926).

    Article  Google Scholar 

  67. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  68. G.V. Sin’ko and N.A. Smirnov: Ab initio. Phys. Rev. B 80, 104113 (2009).

    Article  CAS  Google Scholar 

  69. A. Kumar, J. Wang, and C.N. Tomé: First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 85, 144 (2015).

    Article  CAS  Google Scholar 

  70. M.E. Straumanis and S. Zyszczynski: Lattice parameters, thermal expansion coefficients and densities of Nb, and of solid solutions Nb–O and Nb–N–O and their defect structure. J. Appl. Crystallogr. 3, 1 (1970).

    Article  CAS  Google Scholar 

  71. L.J. Slutsky and C.W. Garland: Elastic constants of magnesium from 4.2° K to 300° K. Phys. Rev. 107, 972 (1957).

    Article  CAS  Google Scholar 

  72. A. Kumar, M.A. Kumar, and I.J. Beyerlein: First-principles study of crystallographic slip modes in ω-Zr. Sci. Rep. 7, 8932 (2017).

    Article  CAS  Google Scholar 

  73. M. Ardeljan, D.J. Savage, A. Kumar, I.J. Beyerlein, and M. Knezevic: The plasticity of highly oriented nano-layered Zr/Nb composites. Acta Mater. 115, 189 (2016).

    Article  CAS  Google Scholar 

  74. B. Joós and M.S. Duesbery: The peierls stress of dislocations: An analytic formula. Phys. Rev. Lett. 78, 266 (1997).

    Article  Google Scholar 

  75. M. Knezevic, B. Drach, M. Ardeljan, and I.J. Beyerlein: Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 277, 239–259 (2014).

    Article  Google Scholar 

  76. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock: A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int. J. Plast. 74, 35 (2015).

    Article  CAS  Google Scholar 

  77. M. Ardeljan, I.J. Beyerlein, and M. Knezevic: A dislocation density based crystal plasticity finite element model: Application to a two-phase polycrystalline HCP/BCC composites. J. Mech. Phys. Solid. 66, 16 (2014).

    Article  CAS  Google Scholar 

  78. D.I. Bolef: Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta. J. Appl. Phys. 32, 100 (1961).

    Article  CAS  Google Scholar 

  79. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  80. M.H. Yoo: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12, 409 (1981).

    Article  CAS  Google Scholar 

  81. P.G. Partridge: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).

    Article  CAS  Google Scholar 

  82. H. Yoshinaga, T. Obara, and S. Morozumi: Twinning deformation in magnesium compressed along the C-axis. Mater. Sci. Eng. 12, 255 (1973).

    Article  CAS  Google Scholar 

  83. M. Ardeljan, R.J. McCabe, I.J. Beyerlein, and M. Knezevic: Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. Appl. Mech. Eng. 295, 396 (2015).

    Article  Google Scholar 

  84. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  85. A. Misra, M. Verdier, H. Kung, J.D. Embury, and J.P. Hirth: Deformation mechanism maps for polycrystalline metallic multiplayers. Scr. Mater. 41, 973 (1999).

    Article  CAS  Google Scholar 

  86. W.D. Nix: Mechanical properties of thin films. Metall. Mater. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  87. J.D. Embury and J.P. Hirth: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall. Mater. 42, 2051 (1994).

    Article  Google Scholar 

  88. R.G. Hoagland, R.J. Kurtz, and C.H. Henager: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).

    Article  CAS  Google Scholar 

  89. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fee metallic composites. Philos. Mag. A 82, 643 (2002).

    CAS  Google Scholar 

  90. Y. Shen and P.M. Anderson: Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solid. 55, 956 (2007).

    Article  CAS  Google Scholar 

  91. Y. Zeng, A. Hunter, I.J. Beyerlein, and M. Koslowski: A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces. Int. J. Plast. 79, 293 (2016).

    Article  Google Scholar 

  92. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Mater. 56, 3109 (2008).

    Article  CAS  Google Scholar 

  93. R.F. Zhang, T.C. Germann, X.Y. Liu, J. Wang, and I.J. Beyerlein: Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 79, 74 (2014).

    Article  CAS  Google Scholar 

  94. S. Huang, I.J. Beyerlein, and C. Zhou: Nanograin size effects on the strength of biphase nanolayered composites. Sci. Rep. 7, 11251 (2017).

    Article  CAS  Google Scholar 

  95. J.R. Mayeur, I.J. Beyerlein, C.A. Bronkhorst, and H.M. Mourad: Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 65, 206 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

M.A., M.K., M.J., and S.P., acknowledge funding from the National Science Foundation (NSF) - Civil, Mechanical and Manufacturing Innovation (CMMI) Early Concept Grants for Exploratory Research (EAGER) Grant No. 1541918. I.J.B. gratefully acknowledges support from a CMMI-MEP Grant No. 1727495. S.P. would also like to gratefully acknowledge support from the University of Nevada, Reno Research Enhancement Grant 2017 for this work. A.K. would like to acknowledge LANL LDRD Program No. 20170680ER for financial support. We acknowledge support from the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053). Part of the research was performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy, Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors acknowledge M. Jahedi for XRD texture measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardeljan, M., Knezevic, M., Jain, M. et al. Room temperature deformation mechanisms of Mg/Nb nanolayered composites. Journal of Materials Research 33, 1311–1332 (2018). https://doi.org/10.1557/jmr.2018.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.107

Navigation