Skip to main content
Log in

Effect of boron concentration on microstructures and properties of Fe–B–C alloy steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The solidification microstructure, types of eutectic borocarbides, heat treatment properties and wear resistance of steel with x wt% B–0.4 wt% C–6.0 wt% Cr–4.0 wt% Mo–1.0 wt% Al–1.0 wt% Si–1.0 wt% V–0.5 wt% Mn (x = 1.0, 2.0, 3.0) have been investigated in this present study. The results indicate that the as-cast Fe–B–C alloy steel consists of pearlite, ferrite, and borocarbides M2(B,C) (M = Fe, Cr, Mo, V, Mn). After quenching or quenching and tempering treatment, ferrite and pearlite transform into martensite. With the increase of boron content, the macrohardness of alloys increases obviously while wear loss decreases. Borocarbides with chromium addition have good toughness and no cracks are observed on worn surfaces. The wear mechanism changes from micro-cutting accompanied with the spalling of borocarbides to single micro-cutting with the boron content rising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. M. Andersson, R. Finnstrom, and T. Nylén: Introduction of enhanced indefinite chill and high speed steel rolls in European hot strip mills. Ironmaking Steelmaking 31, 383–389 (2004).

    Article  CAS  Google Scholar 

  2. S. Spuzic, K. Strafford, C. Subramanian, and G. Savage: Wear of hot rolling mill rolls: An overview. Wear 176, 261–271 (1994).

    Article  Google Scholar 

  3. W. Zamri, P. Kosashi, A. Tieu, Q. Zhu, and H. Zhu: Variations in the microstructures and mechanical properties of the oxide layer on high speed steel hot rolling work rolls. J. Mater. Process. Technol. 212, 2597–2608 (2012).

    Article  CAS  Google Scholar 

  4. G. Wu and Y. Wang: Fracture analysis of high chrominum cast iron roll on CSP mill. Adv. Mater. Res. 548, 538–543 (2012).

    Article  CAS  Google Scholar 

  5. Z. Lv, H. Fu, J. Xing, and S. Ma: Microstructure and crystallography of borides and mechanical properties of Fe–B–C–Cr–Al alloys. J. Alloys Compd. 662, 54–62 (2016).

    Article  CAS  Google Scholar 

  6. H. Fu and Z. Jiang: A study of abrasion resistant cast Fe–B–C alloy. Acta Metall. Sin. 42, 545–548 (2006).

    CAS  Google Scholar 

  7. V. Astini, Y. Prasetyo, and E. Baek: Effect of boron addition on the microstructure and mechanical properties of 6.5% V–5% W high speed steel. Met. Mater. Int. 18, 923–931 (2012).

    Article  CAS  Google Scholar 

  8. J. Kim, K. Ko, S. Noh, G. Kim, and S. Kim: The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys. Wear 267, 1415–1419 (2009).

    Article  CAS  Google Scholar 

  9. X. Song, H. Liu, H. Fu, and J. Xing: Effect of boron concentration on microstructures and properties of high-boron low-carbon ferro-matrix alloy. Foundry 57, 498–503 (2008).

    CAS  Google Scholar 

  10. H. Fu: A study of microstructures and properties of cast Fe–B–C alloy. Foundry 54, 859–863 (2005).

    CAS  Google Scholar 

  11. S. Liu, Y. Cheng, R. Long, S. Wei, and G. Zhang: Research progress and prospect of wear-resistant Fe–B–C alloy. Foundry Technol. 28, 1526–1530 (2007).

    CAS  Google Scholar 

  12. J. Gu, H. Zhang, H. Fu, and Y. Lei: Effect of boron content on the structure and property of Fe–B–C alloy. Foundry Technol. 32, 1376–1379 (2011).

    CAS  Google Scholar 

  13. P. Christodoulou and N. Calos: A step towards designing Fe–Cr–B–C alloys. Mater. Sci. Eng., A 301, 103–117 (2001).

    Article  Google Scholar 

  14. Y. Yang, H. Fu, Y. Lei, K. Wang, L. Zhu, and L. Jang: Phase diagram calculation and analyze on cast high boron low-alloy high-speed steel. J. Mater. Eng. Perform. 25, 409–420 (2016).

    Article  CAS  Google Scholar 

  15. S. Ma, J. Xing, H. Fu, Y. Gao, and J. Zhang: Microstructure and crystallorgraphy of borides and secondary precipitation in 18 wt% Cr–4 wt% Ni–1 wt% Mo–3.5 wt% B–0.27 wt% C steel. Acta Mater. 60, 831–843 (2012).

    Article  CAS  Google Scholar 

  16. H. Fu: Study and application of cast steel containing boron. Foundry Technol. 27, 87–89 (2006).

    CAS  Google Scholar 

  17. C. Guo and P. Kelly: Boron solubility in Fe–Cr–B cast irons. Mater. Sci. Eng., A 352, 40–45 (2003).

    Article  CAS  Google Scholar 

  18. S. Ma, J. Xing, G. Liu, D. Yi, H. Fu, J. Zhang, and Y. Li: Effect of chromium concentration on microstructure and properties of Fe–3.5B alloy. Mater. Sci. Eng., A 527, 6800–6808 (2010).

    Article  CAS  Google Scholar 

  19. C. Guo and P. Kelly: Modeling of spatial distribution of the eutectic M2B borides in Fe–Cr–B cast irons. J. Mater. Sci. 39, 1109–1111 (2004).

    Article  CAS  Google Scholar 

  20. Q. Wang, C. Guo, and P. Kelly: Microstructures of Fe–Cr–B alloys. Heat Treat. Met. 29, 30–32 (2004).

    CAS  Google Scholar 

  21. Y. Jian, Z. Huang, J. Xing, B. Zheng, L. Sun, Y. Liu, and Y. Liu: Effect of improving Fe2B toughness by chromium addition on the two-body abrasive behavior of Fe–3.0B cast alloy. Tribol. Int. 101, 331–339 (2016).

    Article  CAS  Google Scholar 

  22. Y. Jian, Z. Huang, J. Xing, X. Guo, Y. Wang, and Z. Lv: Effects of Mn addition on the two-body abrasive behavior of Fe–3.0B cast alloy. Tribol. Int. 103, 243–251 (2016).

    Article  CAS  Google Scholar 

  23. H. Asahi: Effect of Mo addition and austenitizing temperature on hardenability of low alloy B-added steel. ISIJ Int. 42, 1150–1155 (2002).

    Article  CAS  Google Scholar 

  24. X. Li, J. Hou, Y. Qu, and H. Fu: A study of casting high-boron high-speed steel materials. Materialwiss. Werkstofftech. 46, 1029–1038 (2015).

    Article  CAS  Google Scholar 

  25. Y. Liu, B. Li, J. Li, L. He, S. Gao, and T.G. Nieh: Effect of titanium on the ductilization of Fe–B alloys with high boron content. Mater. Lett. 64, 1299–1301 (2010).

    Article  CAS  Google Scholar 

  26. S. Putatunda: Fracture toughness of a high carbon and high silicon steel. Mater. Sci. Eng., A 297, 31–43 (2001).

    Article  Google Scholar 

  27. J. Hou, H. Fu, Y. Jiang, R. Zhou, and Q. Cen: Microstructure and property of boron-bearing high speed steel roll. Int. J. Soc. Res. 24, 38–44 (2012).

    CAS  Google Scholar 

  28. X. Zou, W. Zhang, and J. Hu: Investigation on centrifugal cast high speed steel roller. Foundry Technol. 32, 1312–1315 (2011).

    CAS  Google Scholar 

  29. G. Voort: Stain etching of metallographic samples. Heat Treat. Met. 7, 56–62 (1986).

    Google Scholar 

  30. H. Fu and K. Hu: Progress of research on high boron wear resistant cast alloys. Mod. Cast Iro. 3, 32–36 (2005).

    Google Scholar 

  31. D. Ma and Z. Ma: High speed steel roll and its alloy elements. Heavy Cast. Forg. 3, 10–12 (2008).

    Google Scholar 

  32. R. Gusejnor: Properties of boron microalloyed structure steel. Metalloved. Term. Obrab. Met. 23, 35–37 (1991).

    Google Scholar 

  33. J. Lorinczi, G. Kralik, M. Kovacs, and A. Horvath: Investigation of the relationships between material properties and processing parameters of boron micro-alloyed quenched and tempered steels. Mater. Sci. Forum 414, 267–274 (2003).

    Article  Google Scholar 

  34. T. Hara, H. Asahi, R. Uemori, and H. Tamehiro: Role of combined addition of niobium and boron and of molybdenum and boron on hardenability in low carbon steels. ISIJ Int. 44, 1431–1440 (2004).

    Article  CAS  Google Scholar 

  35. H. Fu, Z. Wu, and J. Xing: Investigation of quenching effect on mechanical properties and abrasive wear behavior of high boron cast steel. Mater. Sci. Technol. 23, 460–465 (2007).

    Article  CAS  Google Scholar 

  36. Z. Yu, H. Fu, Z. Du, P. Li, and Y. Lei: Effect of quenching treatment on microstructure and property of high boron high speed steel roll. Trans. Mater. Heat Treat. 34, 138–142 (2013).

    CAS  Google Scholar 

  37. R. Yang, L. Zhao, B. Wang, and K. Chen: Valence electron theory analysis of action mechanism of aluminum in alloy steels. Trans. Mater. Heat Treat. 30, 185–189 (2009).

    Google Scholar 

  38. Y. Ma, H. Fu, W. Chen, and Y. Lei: Effects of quenching temperature on microstructure and hardness of Fe–B–Al alloy. Trans. Mater. Heat Treat. 36, 174–178 (2015).

    CAS  Google Scholar 

  39. D. Yi, Z. Zhang, H. Fu, C. Yang, S. Ma, and Y. Li: A study on microstructures and toughness of Fe–B cast alloy containing rare earth. J. Mater. Eng. Perform. 24, 627–635 (2015).

    Article  CAS  Google Scholar 

  40. Z. Wu, P. Cheng, and H. Fu: Effect of quenching temperature on microstructure and properties of Fe–Cr–B–Al alloy. Trans. Mater. Heat Treat. 35, 34–37 (2014).

    Google Scholar 

  41. C. Iwashita and R. Wei: Coarsening of grain boundary carbides in a nickel-based ternary alloy during creep. Acta Mater. 48, 3145–3156 (2000).

    Article  CAS  Google Scholar 

  42. J. Pearce and D. Elwell: Duplex nature of eutectic carbides in heat treated 30% chromium cast iron. J. Mater. Sci. Lett. 5, 1063–1064 (1986).

    Article  CAS  Google Scholar 

  43. D. Shtansky and G. Inden: Phase transformation in Fe–Mo–C and Fe–W–C steels-I. The structural evolution during tempering at 700 °C. Acta Mater. 45, 2861–2878 (1997).

    Article  CAS  Google Scholar 

  44. M. Mrotzek and E. Nembach: Ostwald ripening of precipitates during two successive heat treatments performed at different temperatures. Acta Mater. 56, 150–154 (2008).

    Article  CAS  Google Scholar 

  45. W. Jiang, X. Yao, H. Guan, and Z. Hu: Secondary M6C precipitation in a cobalt-base superalloy. J. Mater. Sci. Lett. 18, 303–305 (1999).

    Article  CAS  Google Scholar 

  46. A. Wiengmoon, J. Pearce, and T. Chairuangsri: Relationship between microstructure and corrosion resistance in 20 wt% Cr, 27 wt% Cr and 36 wt% Cr high chromium cast irons. Mater. Chem. Phys. 125, 739–748 (2011).

    Article  CAS  Google Scholar 

  47. R. Thomson and M. Miller: Carbide precipitaion in martensite during the early stages of tempering Cr and Mo-containing low alloy steels. Acta Mater. 46, 2203–2213 (1998).

    Article  CAS  Google Scholar 

  48. R. Richardson: The wear of metals by hard abrasive. Wear 10, 291–309 (1967).

    Article  CAS  Google Scholar 

  49. Y. Jian, Z. Huang, J. Xing, X. Guo, Y. Wang, and Z. Lv: Effects of Mn addition on the two-body abrasive wear behavior of Fe–3.0 wt% B alloy. Tribol. Int. 103, 243–251 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (51475005 and 51641105), Natural Science Basic Research Plan in Shaanxi Province of China (2014JQ2-5028), Scientific Research Program Funded by Shaanxi Provincial Education Department (15JK1486), the Science and Technology Project of Guangdong Province in China (2015B090926009), the Science and Technology Project of Guangzhou City in China (201604046009), and Project Supported by the Open Research Subject of Key Laboratory of Special Materials and Manufacturing Technology in Sichuan Provincial Universities (szjj2016-089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyi Ren or Hanguang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Fu, H., Xing, J. et al. Effect of boron concentration on microstructures and properties of Fe–B–C alloy steel. Journal of Materials Research 32, 3078–3088 (2017). https://doi.org/10.1557/jmr.2017.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.304

Navigation