Skip to main content
Log in

An examination of the superplastic characteristics of Al–Mg–Sc alloys after processing

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Al–Mg–Sc alloys have become important materials in research conducted on superplasticity in aluminum-based alloys. Many results are now available and this provides an opportunity to examine the consistency of these data and also to make a direct comparison with the predicted rate of flow in conventional superplasticity. Accordingly, all available data were tabulated with divisions according to whether the samples were prepared without processing using severe plastic deformation (SPD) techniques or they were processed using the SPD procedures of equal-channel angular pressing or high-pressure torsion or they were obtained from friction stir processing. It is shown that all results are mutually consistent, the measured superplastic strain rates have no clear dependence on the precise chemical compositions of the alloys, and there is a general agreement, to within less than one order of magnitude of strain rate, with the theoretical prediction for superplastic flow in conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.E. Pearson: The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin. J. Inst. Met. 54, 111 (1934).

    Google Scholar 

  2. A.J. Barnes: Superplastic forming 40 years and still growing. J. Mater. Eng. Perform. 16, 440 (2007).

    Article  CAS  Google Scholar 

  3. T.G. Langdon: The mechanical properties of superplastic materials. Metall. Mater. Trans. A 13, 689 (1982).

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R.S. Musalimov, and N.K. Tsenev: Low-temperature superplasticity of metallic materials. Dokl. Akad. Nauk SSSR 301, 864 (1988).

    CAS  Google Scholar 

  5. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58 (4), 33 (2006).

    Article  Google Scholar 

  7. T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).

    Article  CAS  Google Scholar 

  8. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  9. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  10. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).

    Article  CAS  Google Scholar 

  11. J. Wongsa-Ngam, M. Kawasaki, and T.G. Langdon: A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).

    Article  CAS  Google Scholar 

  12. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: An investigation of microstructural evolution in equal-channel angular pressing. Acta Mater. 45, 4733 (1997).

    Article  CAS  Google Scholar 

  13. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317 (1998).

    Article  CAS  Google Scholar 

  14. K.T. Park, H.J. Lee, C.S. Lee, and D.H. Shin: Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al–Mg alloy at 723 K. Mater. Sci. Eng., A 393, 118 (2005).

    Article  CAS  Google Scholar 

  15. H.J. Lee, J.K. Han, S. Janakiraman, B. Ahn, M. Kawasaki, and T.G. Langdon: Significance of grain refinement on microstructure and mechanical properties of an Al–3% Mg alloy processed by high-pressure torsion. Mater. Sci. Eng., A 393, 118 (2005).

    Article  CAS  Google Scholar 

  16. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metall. Mater. Trans. A 29, 2503 (1998).

    Article  Google Scholar 

  17. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: An investigation of microstructural stability in an Al–Mg alloy with submicrometer grain size. Acta Mater. 44, 2973 (1996).

    Article  CAS  Google Scholar 

  18. J. Wang, M. Furukawa, M. Nemoto, Z. Horita, R.Z. Valiev, and T.G. Langdon: Enhanced grain growth in an Al–Mg alloy with ultrafine grain size. Mater. Sci. Eng., A 216, 41 (1996).

    Article  Google Scholar 

  19. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, R.Z. Valiev, N.K. Tsenev, and T.G. Langdon: Structural evolution and the Hall–Petch relationship in an Al–Mg–Li–Zr alloy with ultra-fine grain size. Acta Mater. 45, 4751 (1997).

    Article  CAS  Google Scholar 

  20. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater. Sci. Eng., A 265, 188 (1999).

    Article  Google Scholar 

  21. A. Yamashita, D. Yamaguchi, Z. Horita, and T.G. Langdon: Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng., A 287, 100 (2000).

    Article  Google Scholar 

  22. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S.V.S. Narayana Murty, M.J.N.V. Prasad, and B.P. Kashyap: Microstructural evolution in Al–Mg–Sc–Zr alloy during severe plastic deformation and annealing. J. Alloys Compd. 673, 182 (2016).

    Article  CAS  Google Scholar 

  23. D.A. Woodford: Strain-rate sensitivity as a measure of ductility. Trans. Am. Soc. Met. 62, 291 (1969).

    CAS  Google Scholar 

  24. T.G. Langdon: The relationship between strain rate sensitivity and ductility in superplastic materials. Scr. Metall. 11, 997 (1977).

    Article  CAS  Google Scholar 

  25. F.A. Mohamed and T.G. Langdon: The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 22, 779 (1974).

    Article  CAS  Google Scholar 

  26. P. Yavari and T.G. Langdon: An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels. Acta Metall. 30, 2181 (1982).

    Article  CAS  Google Scholar 

  27. F.A. Mohamed: Creep ductility in large-grained solid solution alloys. Scr. Metall. 12, 99 (1978).

    Article  CAS  Google Scholar 

  28. P.E. Krajewski and J.G. Schroth: Overview of quick plastic forming technology. Mater. Sci. Forum 551–552, 3 (2007).

    Article  Google Scholar 

  29. E.M. Taleff, D.R. Lesuer, and J. Wadsworth: Enhanced ductility in coarse-grained Al–Mg alloys. Metall. Mater. Trans. A 27, 343 (1996).

    Article  Google Scholar 

  30. T.G. Langdon: Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 44, 5998 (2009).

    Article  CAS  Google Scholar 

  31. M. Otsuka, S. Shibasaki, and M. Kikuchi: Superplasticity in coarse grained Al–Mg alloys. Mater. Sci. Forum 233–234, 193 (1997).

    Google Scholar 

  32. R.R. Sawtell and C.L. Jensen: Mechanical properties and microstructures of Al–Mg–Sc alloys. Metall. Mater. Trans. A 21, 421 (1990).

    Article  Google Scholar 

  33. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: High strain rate superplasticity in a continuously recrystallized Al–6% Mg–0.3% Sc alloy. Acta Mater. 46, 2789 (1998).

    Article  CAS  Google Scholar 

  34. R. Kaibyshev, E. Avtokratova, A. Apollonov, and R. Davies: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy subjected to simple thermomechanical processing. Scr. Mater. 54, 2119 (2006).

    Article  CAS  Google Scholar 

  35. Y.Y. Peng, Z.M. Yin, B. Nie, and L. Zhong: Effect of minor Sc and Zr on superplasticity of Al–Mg–Mn alloys. Trans. Nonferrous Met. Soc. China 17, 744 (2007).

    Article  CAS  Google Scholar 

  36. A. Kumar, A.K. Mukhopadhyay, and K.S. Prasad: Superplastic behaviour of Al–Zn–Mg–Cu–Zr alloy AA7010 containing Sc. Mater. Sci. Eng., A 527, 854 (2010).

    Article  CAS  Google Scholar 

  37. A. Smolej, B. Skaza, and V. Dragojević: Superplastic behavior of Al–4.5Mg–0.46Mn–0.44Sc alloy sheet produced by a conventional rolling process. J. Mater. Eng. Perform. 19, 221 (2010).

    Article  CAS  Google Scholar 

  38. A.K. Mukhopadhyay, A. Kumar, S. Raveendra, and I. Samajdar: Development of grain structure during superplastic deformation of an Al–Zn–Mg–Cu–Zr alloy containing Sc. Scr. Mater. 64, 386 (2011).

    Article  CAS  Google Scholar 

  39. X. Cao, G. Xu, Y. Duan, Z. Yin, L. Lu, and Y. Wang: Achieving high superplasticity of a new Al–Mg–Sc–Zr alloy sheet prepared by a simple thermal-mechanical process. Mater. Sci. Eng., A 647, 333 (2015).

    Article  CAS  Google Scholar 

  40. Y. Duan, G. Xu, L. Zhou, D. Xiao, Y. Deng, Z. Yin, B. Peng, Q. Pan, Y. Wang, and L. Lu: Achieving high superplasticity of a traditional thermal-mechanical processed non-superplastic Al–Zn–Mg alloy sheet by low Sc additions. J. Alloys Compd. 638, 364 (2015).

    Article  CAS  Google Scholar 

  41. Y.I. Duan, G.F. Xu, D. Xiao, L.Q. Zhou, Y. Deng, and Z.M. Yin: Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging. Mater. Sci. Eng., A 624, 124 (2015).

    Article  CAS  Google Scholar 

  42. Y.I. Duan, G.F. Xu, X.Y. Peng, Y. Deng, Z. Li, and Z.M. Yin: Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal-mechanical processed Al–Zn–Mg alloy sheet. Mater. Sci. Eng., A 648, 80 (2015).

    Article  CAS  Google Scholar 

  43. A.D. Kotov, A.V. Mikhaylovskaya, M.S. Kishchik, A.A. Tsarkov, S.A. Aksenov, and V.K. Portnoy: Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment. J. Alloys Compd. 688, 336 (2016).

    Article  CAS  Google Scholar 

  44. A.V. Mikhaylovskaya, O.A. Yakovtseva, V.V. Cheverikin, A.D. Kotov, and V.K. Portnoy: Superplastic behaviour of Al–Mg–Zn–Zr–Sc-based alloys at high strain rates. Mater. Sci. Eng., A 659, 225 (2016).

    Article  CAS  Google Scholar 

  45. X. Sun, Q. Pan, M. Li, Y. Shi, and J. Yan: Superplastic deformation behavior of cold-rolled Al–Mg–Sc–Zr alloy. Chin. J. of Nonferrous Met. 26, 280 (2016).

    CAS  Google Scholar 

  46. G. Xu, X. Cao, T. Zhang, Y. Duan, X. Peng, Y. Deng, and Z. Yin: Achieving high strain rate superplasticity of an Al–Mg–Sc–Zr alloy by a new asymmetrical rolling technology. Mater. Sci. Eng., A 672, 98 (2016).

    Article  CAS  Google Scholar 

  47. H. Xiang, Q.L. Pan, X.H. Yu, X. Huang, X. Sun, X.D. Wang, M.J. Li, and Z.M. Yin: Superplasticity behaviors of Al–Zn–Mg–Zr cold-rolled alloy sheet with minor Sc addition. Mater. Sci. Eng., A 676, 128 (2016).

    Article  CAS  Google Scholar 

  48. M. Li, Q. Pan, Y. Shi, X. Sun, and H. Xiang: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy processed via simple rolling. Mater. Sci. Eng., A 687, 298 (2017).

    Article  CAS  Google Scholar 

  49. S. Komura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: High strain rate superplasticity in an Al–Mg alloy containing scandium. Scr. Mater. 38, 1851 (1998).

    Article  CAS  Google Scholar 

  50. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 48, 3633 (2000).

    Article  CAS  Google Scholar 

  51. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Influence of scandium on superplastic ductilities in an Al–Mg–Sc alloy. J. Mater. Res. 15, 2571 (2000).

    Article  CAS  Google Scholar 

  52. H. Akamatsu, T. Fujinami, Z. Horita, and T.G. Langdon: Influence of rolling on the superplastic behavior of an Al–Mg–Sc alloy after ECAP. Scr. Mater. 44, 759 (2001).

    Article  CAS  Google Scholar 

  53. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon: Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy. Acta Mater. 49, 3829 (2001).

    Article  CAS  Google Scholar 

  54. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: An evaluation of the flow behavior during high strain rate superplasticity in an Al–Mg–Sc alloy. Metall. Mater. Trans. A 32, 707 (2001).

    Google Scholar 

  55. S. Komura, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Mater. Sci. Eng., A 297, 111 (2001).

    Article  Google Scholar 

  56. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater. 50, 553 (2002).

    Article  CAS  Google Scholar 

  57. V.N. Perevezentsev, V.N. Chuvil’deev, V.I. Kopylov, A.N. Sysoev, and T.G. Langdon: Developing high strain rate superplasticity in Al–Mg–Sc–Zr alloys using equal-channel angular pressing. Ann. Chim. Sci. Mat. 27, 99 (2002).

    Article  CAS  Google Scholar 

  58. S. Ota, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Low-temperature superplasticity in aluminium alloys processed by equal-channel angular pressing. Mater. Trans. 43, 2364 (2002).

    Article  CAS  Google Scholar 

  59. V.N. Perevezentsev, V.N. Chuvil’deev, A.N. Sysoev, V.I. Kopylov, and T.G. Langdon: Achieving high-strain-rate superplasticity in Al–Mg–Sc–Zr alloys after severe plastic deformation. Phys. Met. Metallogr. 94, S45 (2002).

    Google Scholar 

  60. R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev, and T.G. Langdon: Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing. Scr. Mater. 49, 467 (2003).

    Article  CAS  Google Scholar 

  61. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh: High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scr. Mater. 50, 511 (2004).

    Article  CAS  Google Scholar 

  62. V.N. Perevezentsev, V.N. Chuvil’deev, V.I. Kopylov, A.N. Sysoev, and T.G. Langdon: High-strain-rate superplasticity of Al–Mg–Sc–Zr alloys. Russ. Metall. 1, 28 (2004).

    Google Scholar 

  63. M. Kamachi, M. Furukawa, Z. Horita, and T.G. Langdon: Achieving superplasticity of Al–1% Mg–0.2% Sc alloy in plate samples processed by equal channel angular pressing. Mater. Trans. 45, 2521 (2004).

    Article  CAS  Google Scholar 

  64. K-T. Park, H-J. Lee, C.S. Lee, W.J. Nam, and D.H. Shin: Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing. Scr. Mater. 51, 479 (2004).

    Article  CAS  Google Scholar 

  65. G. Sakai, Z. Horita, and T.G. Langdon: An evaluation of superplastic anisotropy after processing by equal-channel angular pressing. Mater. Trans. 45, 3079 (2004).

    Article  CAS  Google Scholar 

  66. G. Sakai, Z. Horita, and T.G. Langdon: Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater. Sci. Eng., A 393, 344 (2005).

    Article  CAS  Google Scholar 

  67. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Achieving high strain rate superplasticity in an Al–Li–Mg alloy through equal channel angular extrusion. Mater. Sci. Technol. 21, 408 (2005).

    Article  CAS  Google Scholar 

  68. P. Málek, K. Turba, M. Cieslar, I. Drbohlav, and T. Kruml: Structure development during superplastic deformation of an Al–Mg–Sc–Zr alloy produced by equal-channel angular pressing. Mater. Sci. Eng., A 462, 95 (2007).

    Article  CAS  Google Scholar 

  69. K. Turba, P. Málek, and M. Cieslar: Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing. Mater. Sci. Eng., A 462, 91 (2007).

    Article  CAS  Google Scholar 

  70. E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov: Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy. Mater. Sci. Eng., A 538, 386 (2012).

    Article  CAS  Google Scholar 

  71. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, and M. Markushev: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy produced by equal channel angular pressing and subsequent cold and warm rolling. Mater. Sci. Forum 710, 223 (2012).

    Article  CAS  Google Scholar 

  72. R. Kaibyshev, D. Zhemchuzhnikova, and A. Mogucheva: Effect of Mg content on high strain rate superplasticity of Al–Mg–Sc–Zr alloys subjected to equal-channel angular pressing. Mater. Sci. Forum 735, 265 (2013).

    Article  CAS  Google Scholar 

  73. E. Avtokratova, O. Sitdikov, and M. Markushev: Effect of cold/warm rolling following warm ECAP on superplastic properties of an Al–5.8% Mg–0.32% Sc alloy. Lett. Mater. 5, 319 (2015).

    Article  Google Scholar 

  74. A. Dubyna, S. Malopheyev, and R. Kaibyshev: Effect of rolling on superplastic behavior of an Al–Mg–Sc alloy with ultrafine-grained structure. Mater. Sci. Forum 838–839, 416 (2016).

    Article  Google Scholar 

  75. A. Mogucheva, D. Yuzbekova, and R. Kaibyshev: Superplasticity in a 5024 aluminium alloy subjected to ECAP and subsequent cold rolling. Mater. Sci. Forum 838–839, 428 (2016).

    Article  Google Scholar 

  76. D. Yuzbekova, A. Mogucheva, and R. Kaibyshev: Low-temperature superplasticity in an Al–Mg–Sc alloy processed by ECAP. Mater. Sci. Forum 838–839, 422 (2016).

    Article  Google Scholar 

  77. D. Yuzbekova, A. Mogucheva, and R. Kaibyshev: Superplasticity of ultrafine-grained Al–Mg–Sc–Zr alloy. Mater. Sci. Eng., A 675, 228 (2016).

    Article  CAS  Google Scholar 

  78. P.H.R. Pereira, Y.C. Wang, Y. Huang, and T.G. Langdon: Influence of grain size on the flow properties of an Al–Mg–Sc alloy over seven orders of magnitude of strain rate. Mater. Sci. Eng., A 685, 367 (2017).

    Article  CAS  Google Scholar 

  79. P.H.R. Pereira, Y. Huang, and T.G. Langdon: Thermal stability and superplastic behaviour of an Al–Mg–Sc alloy processed by ECAP and HPT at different temperatures. IOP Conf. Ser.: Mater Sci. Eng. 194, 012013 (2017).

    Article  Google Scholar 

  80. V.N. Perevezentsev, M.Y. Shcherban, M.Y. Murashkin, and R.Z. Valiev: High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570. Tech. Phys. Lett. 33, 648 (2007).

    Article  CAS  Google Scholar 

  81. Z. Horita and T.G. Langdon: Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scr. Mater. 58, 1029 (2008).

    Article  CAS  Google Scholar 

  82. Y. Harai, K. Edalati, Z. Horita, and T.G. Langdon: Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater. 57, 1147 (2009).

    Article  CAS  Google Scholar 

  83. P.H.R. Pereira, Y. Huang, and T.G. Langdon: Examining the mechanical properties and superplastic behaviour in an Al–Mg–Sc alloy after processing by HPT. Lett. Mater. 5, 294 (2015).

    Article  Google Scholar 

  84. I. Charit and R.S. Mishra: Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater. 53, 4211 (2005).

    Article  CAS  Google Scholar 

  85. F.C. Liu and Z.Y. Ma: Achieving exceptionally high superplasticity at high strain rates in a micrograined Al–Mg–Sc alloy produced by friction stir processing. Scr. Mater. 59, 882 (2008).

    Article  CAS  Google Scholar 

  86. F.C. Liu, Z.Y. Ma, and L.Q. Chen: Low-temperature superplasticity of Al–Mg–Sc alloy produced by friction stir processing. Scr. Mater. 60, 968 (2009).

    Article  CAS  Google Scholar 

  87. F.C. Liu and Z.Y. Ma: Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr. Mater. 62, 125 (2010).

    Article  CAS  Google Scholar 

  88. F.C. Liu, Z.Y. Ma, and F.C. Zhang: High strain rate superplasticity in a micro-grained Al–Mg–Sc alloy with predominant high angle grain boundaries. J. Mater. Sci. Technol. 28, 1025 (2012).

    Article  CAS  Google Scholar 

  89. A. Smolej, D. Klobčar, B. Skaza, A. Nagode, E. Slaček, V. Dragojević, and S. Smolej: Superplasticity of the rolled and friction stir processed Al–4.5Mg–0.35Sc–0.15Zr alloy. Mater. Sci. Eng., A 590, 239 (2014).

    Article  CAS  Google Scholar 

  90. A. Smolej, D. Klobčar, B. Skaza, A. Nagode, E. Slaček, V. Dragojević, and S. Smolej: The superplasticity of friction stir processed Al–5Mg alloy with additions of scandium and zirconium. Int. J. Mater. Res. 105, 1218 (2014).

    Article  CAS  Google Scholar 

  91. Z.Y. Ma: Friction stir processing technology: A review. Metall. Mater. Trans. A 39, 642 (2008).

    Article  CAS  Google Scholar 

  92. X. He, F. Gu, and A. Ball: A review of numerical analysis of friction stir welding. Prog. Mater. Sci. 65, 1 (2014).

    Article  Google Scholar 

  93. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).

    Article  CAS  Google Scholar 

  94. M. Kamachi, M. Furukawa, Z. Horita, and T.G. Langdon: Equal-channel angular pressing using plate samples. Mater. Sci. Eng., A 361, 258 (2003).

    Article  CAS  Google Scholar 

  95. Y. Takizawa, T. Masuda, K. Fujimitsu, T. Kajita, K. Watanabe, M. Yumoto, Y. Otagiri, and Z. Horita: Scaling up of high-pressure sliding (HPS) for grain refinement and superplasticity. Metall. Mater. Trans. A 47, 4669 (2016).

    Article  Google Scholar 

  96. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59, 627 (2008).

    Article  CAS  Google Scholar 

  97. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater. Sci. Eng., A 525, 68 (2009).

    Article  CAS  Google Scholar 

  98. R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater. 37, 1945 (1997).

    Article  CAS  Google Scholar 

  99. K. Higashi, M. Mabuchi, and T.G. Langdon: High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ Int. 36, 1423 (1996).

    Article  CAS  Google Scholar 

  100. T.G. Langdon: An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng., A 174, 225 (1994).

    Article  Google Scholar 

  101. L.K.L. Falk, P.R. Howell, G.L. Dunlop, and T.G. Langdon: The role of matrix dislocations in the superplastic deformation of a copper alloy. Acta Metall. 34, 1203 (1986).

    Article  CAS  Google Scholar 

  102. R.Z. Valiev and T.G. Langdon: An investigation of the role of intragranular dislocation strain in the superplastic Pb–62% Sn eutectic alloy. Acta Metall. Mater. 41, 949 (1993).

    Article  CAS  Google Scholar 

  103. Y. Xun and F.A. Mohamed: Slip-accommodated superplastic flow in Zn–22 wt% Al. Philos. Mag. 83, 2247 (2003).

    Article  CAS  Google Scholar 

  104. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps for superplastic materials. Scr. Metall. 10, 759 (1976).

    Article  CAS  Google Scholar 

  105. T.G. Langdon: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).

    Article  CAS  Google Scholar 

  106. M. Kawasaki and T.G. Langdon: Principles of superplasticity in ultrafine-grained materials. J. Mater. Sci. 42, 1782 (2007).

    Article  CAS  Google Scholar 

  107. M. Kawasaki, N. Balasubramanian, and T.G. Langdon: Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater. Sci. Eng., A 528, 6624 (2011).

    Article  CAS  Google Scholar 

  108. M. Kawasaki and T.G. Langdon: Review: Achieving superplasticity in metals processed by high-pressure torsion. J. Mater. Sci. 49, 6487 (2014).

    Article  CAS  Google Scholar 

  109. M. Kawasaki and T.G. Langdon: Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. J. Mater. Sci. 51, 19 (2016).

    Article  CAS  Google Scholar 

  110. F.A. Mohamed and T.G. Langdon: Deformation mechanism maps based on grain size. Metall. Trans. 5, 2339 (1974).

    Article  CAS  Google Scholar 

  111. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin: Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Mater. 72, 125 (2014).

    Article  CAS  Google Scholar 

  112. Yu. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S.V. Divinski, and G. Wilde: Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation. Acta Mater. 124, 210 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the NRF Korea funded by MoE under Grant No. NRF-2016R1A6A1A03013422 and by MSIP under Grant No. NRF-2016K1A4A3914691, in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, P.H.R., Huang, Y., Kawasaki, M. et al. An examination of the superplastic characteristics of Al–Mg–Sc alloys after processing. Journal of Materials Research 32, 4541–4553 (2017). https://doi.org/10.1557/jmr.2017.286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.286

Navigation