Skip to main content
Log in

Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Powder metallurgy processing of aluminum alloy based metal matrix composites (MMC) is realized to be a promising alternative as expected to advance rapidly compared to other conventional methods. This paper reviews the extensive development in metal-matrix composite research works with particular focus on aluminum alloys 2xxx series as metal-matrix particulates processed by powder metallurgy route. Effect of reinforcement materials such as SiC and Al2O3 on the mechanical properties of the composites manufactured through conventional methods and powder metallurgy route are compared and presented. The influence of percentage of reinforcement material on the overall properties of the MMC’s as reported by the researchers are presented. Summary on fundamental aspects of manufacturing MMC’s via powder metallurgy route, the effect of mechanical properties, tribological properties, and microstructural properties are presented. Eventually, some advantages of powder metallurgy method are mentioned which may substantiate the claim to consider this as a novel method for near net shape manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. V.K. Lindroos and M.J. Talvitie: Recent advances in metal matrix composites. J Mater. Process. Technol. 53, 273–284 (1995).

    Article  Google Scholar 

  2. J.M. Torralba, C.E. Costa, and F. Velasco: P/M aluminum matrix composites: An overview. J Mater. Process. Technol. 133, 203–206 (2003).

    Article  CAS  Google Scholar 

  3. C. Srinivasa: 2014 and 6061 aluminium powder metallurgy composites containing silicon carbide particles/fibres. Mater. Des. 3069 (96), 359–366 (2014).

    Google Scholar 

  4. C. Persson, A. Weiland, L. Hultman, and U. Wahlstro: Internal stress and microstructure of SiC reinforced aluminium alloy 2014. Acta. Metalla. 46 (15), 5271–5281 (2014).

    Google Scholar 

  5. G.S. Marahleh: Strengthening of aluminum by SiC, Al2O3 and MgO. JJMIE 5 (6), 533–541 (2011).

    Google Scholar 

  6. R.S. Mishra, T.R. Bieler, and A.K. Mukherjee: Overview No. 119 — Superplasticity in Powder Metallury Aluminum Alloys and composites. Acta. Metalla. 43 (3), 877–891 (1995).

    Article  CAS  Google Scholar 

  7. J. Corrochano, M. Lieblich, and J. Ibáñez: The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles. Composites, Part A 42 (9), 1093–1099 (2011).

    Article  CAS  Google Scholar 

  8. B.S. Ünlü: Investigation of tribological and mechanical properties Al2O3–SiC reinforced Al composites manufactured by casting or P/M method. Mater. Des. 29 (10), 2002–2008 (2008).

    Article  CAS  Google Scholar 

  9. N.E. Bekheet, R.M. Gadelrab, M.F. Salah, and A.N.A. El-azim: The effects of aging on the hardness and fatigue behavior of 2024 Al alloy/SiC composites. Mater. Des. 23, 153–159 (2002).

    Article  CAS  Google Scholar 

  10. H.K. Durmuş and C. Meriç: Age-hardening behavior of powder metallurgy AA 2014 alloy. Mater. Des. 28 (3), 982–986 (2007).

    Article  CAS  Google Scholar 

  11. W. Wai, L. Eugene, and M. Gupta: Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering. J. Microw. Power Electromagn. Energ. 44 (1), 14–27 (2010).

    Article  Google Scholar 

  12. M. Oghbaei and O. Mirzaee: Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494 (1–2), 175–189 (2010).

    Article  CAS  Google Scholar 

  13. S. Singh, D. Gupta, V. Jain, and A. Sharma: Microwave processing of materials and applications in manufacturing industries: A review. Mater. Manuf. Processes 30, 37–41 (2014).

    Google Scholar 

  14. K. Venkateswarlu, S. Saurabh, V. Rajinikanth, R.K. Sahu, and A.K. Ray: Synthesis of TiN reinforced aluminium metal matrix composites through microwave sintering. J. Mater. Eng. Perform. 19 (2), 231–236 (2009).

    Article  CAS  Google Scholar 

  15. T. Senthilvelan, S. Gopalakannan, S. Vishnuvarthan, and K. Keerthivaran: Fabrication and characterization of SiC, Al2O3 and B4C reinforced Al–Zn–Mg–Cu alloy (AA 7075) metal matrix composites: A study. Adv. Mater. Res. 622–623, 1295–1299 (2012).

    Article  CAS  Google Scholar 

  16. Y.-C. Kang and S.L.-I. Chan: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85 (2–3), 438–443 (2004).

    Article  CAS  Google Scholar 

  17. S.M.R. Mousavi Abarghouie and S.M.S. Reihani: Aging behavior of a 2024 Al alloy–SiCp composite. Mater. Des. 31 (5), 2368–2374 (2010).

    Article  CAS  Google Scholar 

  18. C. Dhadsanadhep, T. Luangvaranunt, J. Umeda, and K. Kondoh: Fabrication of Al/Al2O3 composite by powder metallurgy method from aluminum and rice husk ash. J. Mater. 18 (2), 99–102 (2008).

    CAS  Google Scholar 

  19. D.R. Kumar, R. Narayanasamy, and C. Loganathan: Effect of glass and SiC in aluminum matrix on workability and strain hardening behavior of powder metallurgy hybrid composites. Mater. Des. 34, 120–136 (2012).

    Article  CAS  Google Scholar 

  20. R. Purohit, R.S. Rana, and C.S. Verma: Fabrication of Al–SiCp composites through powder metallurgy process and testing of properties. Int. J. Eng. Res. & Appl. 2 (3), 420–437 (2012).

    Google Scholar 

  21. S.C. Tjong and Z.Y. Ma: High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes. Compos. Sci. Technol. 59, 1117–1125 (1999).

    Article  CAS  Google Scholar 

  22. D.P. Bishop, J.R. Cahoon, M.C. Chaturvedi, G.J. Kipouros, and W.F. Caley: On enhancing the mechanical properties of aluminum P/M alloys. Mater. Sci. Eng., A 290, 16–24 (2000).

    Article  Google Scholar 

  23. Z. Shi, J. Yang, J.C. Lee, D. Zhang, H.I. Lee, and R. Wu: The interfacial characterization of oxidized SiC(p)/2014 Al composites. Mater. Sci. Eng., A 303 (2001), 46–53 (2014).

    Google Scholar 

  24. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba: Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng., A 342, 131–143 (2003).

    Article  Google Scholar 

  25. M. Rahimian, N. Parvin, and N. Ehsani: Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater. Sci. Eng., A 527 (4–5), 1031–1038 (2010).

    Article  CAS  Google Scholar 

  26. S. Pournaderi, S. Mahdavi, and F. Akhlaghi: Fabrication of Al/Al2O3 composites by in situ powder metallurgy (IPM). Powder Technol. 229, 276–284 (2012).

    Article  CAS  Google Scholar 

  27. M. Kok: Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 161 (3), 381–387 (2005).

    Article  CAS  Google Scholar 

  28. M. Yamaguchi, F. Meng, K. Firestein, K. Tsuchiya, and D. Golberg: Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Mater. Sci. Eng., A 604, 9–17 (2014).

    Article  CAS  Google Scholar 

  29. T. Kobayashi: Strength and fracture of aluminum alloys. Mater. Sci. Eng., A 280, 8–16 (2000).

    Article  Google Scholar 

  30. K.S. See and T.A. Dean: The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs. J Mater. Process. Technol. 136 (96), 0–9 (1997).

    Google Scholar 

  31. A. Hassani, E. Bagherpour, and F. Qods: Influence of pores on workability of porous Al/SiC composites fabricated through powder metallurgy + mechanical alloying. J. Alloys Compd. 591, 132–142 (2014).

    Article  CAS  Google Scholar 

  32. Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, and T. Zuo: Mechanical properties of a low-thermal-expansion aluminum/silicon composite produced by powder metallurgy. J. Mater. Sci. Technol. 30 (4), 417–422 (2014).

    Article  CAS  Google Scholar 

  33. S. Scudino, G. Liu, M. Sakaliyska, K.B. Surreddi, and J. Eckert: Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties. Acta Mater. 57 (15), 4529–4538 (2009).

    Article  CAS  Google Scholar 

  34. V. Umasankar, S. Karthikeyan, and M.A. Xavior: The influence of electroless nickel coated SiC on the interface strength and microhardness of aluminium composites. J. Mater. Env. Sci. 5 (1), 153–158 (2014).

    CAS  Google Scholar 

  35. M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi: The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209 (14), 5387–5393 (2009).

    Article  CAS  Google Scholar 

  36. C.R.A. Chennakesava Reddy and B. Kotiveerachari: Effect of aging condition on structure and the properties of Al-ALLOY/SiC composite. Int. J. Eng. & Technol. 2 (6), 462–465 (2010).

    CAS  Google Scholar 

  37. P. Ashwath and M.A. Xavior: The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng. 97, 1027–1032 (2014).

    Article  CAS  Google Scholar 

  38. Y. Sahin and V. Kilicli: Abrasive wear behaviour of SiCp/Al alloy composite in comparison with ausferritic ductile iron. Wear 271 (11–12), 2766–2774 (2011).

    Article  CAS  Google Scholar 

  39. D.P. Bishop, X.Y. Li, K.N. Tandon, and W.F. Caley: Dry sliding wear behaviour of aluminum alloy 2014 microalloyed with Sn and Ag. Wear 222, 84–92 (2014).

    Article  Google Scholar 

  40. P. Ravindran, K. Manisekar, P. Rathika, and P. Narayanasamy: Tribological properties of powder metallurgy–Processed aluminium self lubricating hybrid composites with SiC additions. Mater. Des. 45, 561–570 (2013).

    Article  CAS  Google Scholar 

  41. P. Ravindran, K. Manisekar, P. Rathika, and P. Narayanasamy: Tribological properties of powder metallurgy — Processed aluminium self lubricating hybrid composites with SiC additions. Mater. Des. 45, 561–570 (2013).

    Article  CAS  Google Scholar 

  42. M. Narayan and P. Bai: Dry sliding wear of Al alloy 2024–A12O3 particle composites. Wear 183, 563–570 (1995).

    Article  Google Scholar 

  43. Y. Şahin: Abrasive wear behaviour of SiC/2014 aluminium composite. Tribol. Int. 43 (5–6), 939–943 (2010).

    Article  CAS  Google Scholar 

  44. T. Miyajima and Y. Iwai: Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear 255 (1–6), 606–616 (2003).

    Article  CAS  Google Scholar 

  45. H.G.P. Kumar and M.A. Xavior: Fatigue and wear behavior of Al6061–graphene composites synthesized by powder metallurgy. Trans. Indian Inst. Met. 69, 415–419 (2015).

    Article  CAS  Google Scholar 

  46. R.N. Rao and S. Das: Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites. Mater. Des. 31 (3), 1200–1207 (2010).

    Article  CAS  Google Scholar 

  47. M. Asif, K. Chandra, and P.S. Misra: Development of aluminium based hybrid metal matrix composites for heavy duty applications. J. Min. & Mater. Char. Eng. 10 (14), 1337–1344 (2011).

    Google Scholar 

  48. P. Ravindran, K. Manisekar, R. Narayanasamy, and P. Narayanasamy: Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram. Int. 39, 1169–1182 (2013).

    Article  CAS  Google Scholar 

  49. N. Radhika, R. Subramanian, and S.V. Prasat: Tribological behaviour of aluminium/alumina/graphite hybrid metal matrix composite using Taguchi’s techniques. J. Min. & Mater. Char. Eng. 10 (5), 427–443 (2011).

    Google Scholar 

  50. G. Iacob, G. Popescu, and M. Buzatu: Al/Al2O3/Gr hybrid composites. U. P. B. Science Bulletin 75, 117–126 (2013).

    CAS  Google Scholar 

  51. T. Miyajima, S. Sasayama, T. Honda, Y. Fuwa, and Y. Iwai: Effects of hardness of counterface on dry sliding wear of aluminum matrix composites against steels. Tribol. Online 7 (1), 24–32 (2012).

    Article  Google Scholar 

  52. A. Canakci and F. Arslan: Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs. Int. J. Adv. Manuf. Tech. 63 (5–8), 785–795 (2012).

    Article  Google Scholar 

  53. L. Hu, A. Kothalkar, M. O’Neil, I. Karaman, and M. Radovic: Current-activated, pressure-assisted infiltration: A novel, versatile route for producing interpenetrating ceramic–metal composites. Mater. Res. Lett. 2 (3), 124–130 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ashwath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwath, P., Xavior, M.A. Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys. Journal of Materials Research 31, 1201–1219 (2016). https://doi.org/10.1557/jmr.2016.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.131

Navigation