Skip to main content
Log in

Friction, nanostructure, and residual stress of single-layer and multi-layer amorphous carbon films deposited by radio-frequency sputtering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single- and multi-layer amorphous carbon (a-C) films of varying thickness were deposited on Si(100) substrates by radio-frequency sputtering in a pure Ar atmosphere. The thickness, roughness, coefficient of friction, and residual stress of the a-C films were measured by profilometry, atomic force microscopy, surface force microscopy, and curvature method, respectively. The through-thickness nanostructure and elemental composition of the films were examined by cross-sectional transmission electron microscopy and electron energy loss spectroscopy. The multi-layer a-C films, consisting of alternating ∼10-nm-thick hard and soft a-C layers deposited under 0 and −200 V substrate bias, respectively, were found to exhibit lower roughness, coefficient of friction, and residual stress and slightly higher tetrahedral carbon atom hybridization than single-layer a-C films of similar thickness. The results of this study reveal a strong correlation of the friction characteristics with the surface roughness and nanostructure of single- and multi-layer a-C films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. J. Ishikawa, Y. Takeiri, K. Ogawa, and T. Takagi: Transparent carbon film prepared by mass-separated negative−carbon-ion-beam deposition. J. Appl. Phys. 61, 2509 (1987).

    Article  CAS  Google Scholar 

  2. D.R. McKenzie, D. Muller, and B.A. Pailthorpe: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  3. P. Kovarik, E.B.D. Bourdon, and R.H. Prince: Electron-energy-loss characterization of laser-deposited a-C, a-C:H, and diamond films. Phys. Rev. B 48, 12123 (1993).

    Article  CAS  Google Scholar 

  4. W. Lu and K. Komvopoulos: Dependence of growth and nanomechanical properties of ultrathin amorphous carbon films on radio frequency sputtering conditions. J. Appl. Phys. 86, 2268 (1999).

    Article  CAS  Google Scholar 

  5. Y. Lifshitz, G.D. Lempert, and E. Grossman: Substantiation of subplantation model for diamondlike film growth by atomic force microscopy. Phys. Rev. Lett. 72, 2753 (1994).

    Article  CAS  Google Scholar 

  6. J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva: Stress-induced formation of high-density amorphous carbon thin films. J. Appl. Phys. 82, 6024 (1997).

    Article  CAS  Google Scholar 

  7. J. Schwan, S. Ulrich, H. Roth, E. Ehrhardt, S.R.P. Silva, J. Robertson, R. Samlenski, and R. Brenn: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 79, 1416 (1996).

    Article  CAS  Google Scholar 

  8. M. Ohring: The Materials Science of Thin Films (Academic Press, Boston, MA, 1992).

    Google Scholar 

  9. W. Lu and K. Komvopoulos: Implanted argon atoms as sensing probes of residual stress in ultrathin films. Appl. Phys. Lett. 76, 3206 (2000).

    Article  CAS  Google Scholar 

  10. W. Lu, K. Komvopoulos, and S.W. Yeh: Stability of ultrathin amorphous carbon films deposited on smooth silicon substrates by radio frequency sputtering. J. Appl. Phys. 89, 2422 (2001).

    Article  CAS  Google Scholar 

  11. D.J. Srolovitz and M.G. Goldiner: The thermodynamics and kinetics of film agglomeration. JOM 47, 31 (1995).

    Article  CAS  Google Scholar 

  12. T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, and P.B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond. Appl. Phys. Lett. 71, 3820 (1997).

    Article  CAS  Google Scholar 

  13. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, and J. Robertson: Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191 (1999).

    Article  CAS  Google Scholar 

  14. R. Kalish, Y. Lifshitz, K. Nugent, and S. Prawer: Thermal stability and relaxation in diamond-like-carbon. A Raman study of films with different sp3 fractions (ta-C to a-C). Appl. Phys. Lett. 74, 2936 (1999).

    Article  CAS  Google Scholar 

  15. J.P. Sullivan, T.A. Friedmann, and A.G. Baca: Stress relaxation and thermal evolution of film properties in amorphous carbon. J. Electron. Mater. 26, 1021 (1997).

    Article  CAS  Google Scholar 

  16. M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie, and T. Fauenheim: Highly tetrahedral amorphous carbon films with low stress. Appl. Phys. Lett. 69, 2344 (1996).

    Article  CAS  Google Scholar 

  17. W. Dai and A. Wang: Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources. J. Alloys Compd. 509, 4626 (2011).

    Article  CAS  Google Scholar 

  18. C.S. Lee, K.-R. Lee, K.Y. Eun, K.H. Yoon, and J.H. Han: Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process. Diamond Relat. Mater. 11, 198 (2002).

    Article  Google Scholar 

  19. A-Y. Wang, K.-R. Lee, J.-P. Ahn, and J.H. Han: Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique. Carbon 44, 1826 (2006).

    Article  CAS  Google Scholar 

  20. B. Shi and W.J. Meng: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).

    Article  CAS  Google Scholar 

  21. P. Zhang, B.K. Tay, C.Q. Sun, and S.P. Lau: Microstructure and mechanical properties of nanocomposite amorphous carbon films. J. Vac. Sci. Technol. A 20, 1390 (2002).

    Article  CAS  Google Scholar 

  22. S. Logothetidis, C. Charitidis, M. Gioti, Y. Panayiotatos, M. Handrea, and W. Kautek: Comprehensive study on the properties of multilayered amorphous carbon films. Diamond Relat. Mater. 9, 756 (2000).

    Article  CAS  Google Scholar 

  23. W. Lu, K. Komvopoulos, P. Patsalas, C. Charitidis, M. Gioti, and S. Logothetidis: Microstructure and nanomechanical and optical properties of single- and multi-layer carbon films synthesized by radio frequency sputtering. Surf. Coat. Technol. 168, 12 (2003).

    Article  CAS  Google Scholar 

  24. D. Wan and K. Komvopoulos: Effect of low-pressure plasma discharge conditions on the thickness and roughness of ultrathin films of amorphous carbon. J. Appl. Phys. 100, 063307 (2006).

    Article  Google Scholar 

  25. J. Xie and K. Komvopoulos: Hybridization and tribomechanical properties of ultrathin amorphous carbon films synthesized by radio-frequency low-pressure plasma discharges. Surf. Coat. Technol. 262, 15 (2015).

    Article  CAS  Google Scholar 

  26. P. Patsalas, S. Logothetidis, and P.C. Kelires: Surface and interface morphology and structure of amorphous carbon thin and multilayer films. Diamond Relat. Mater. 14, 1241 (2005).

    Article  CAS  Google Scholar 

  27. W. Lu and K. Komvopoulos: Nanotribological and nanomechanical properties of ultrathin amorphous carbon films synthesized by radio frequency sputtering. J. Tribol. 123, 641 (2001).

    Article  CAS  Google Scholar 

  28. D. Wan and K. Komvopoulos: Transmission electron microscopy and electron energy loss spectroscopy analysis of ultrathin amorphous carbon films. J. Mater. Res. 19, 2131 (2004).

    Article  CAS  Google Scholar 

  29. N. Wang and K. Komvopoulos: Incidence angle effect of energetic carbon ions on deposition rate, topography, and structure of ultrathin amorphous carbon films deposited by filtered cathodic vacuum arc. IEEE Trans. Magn. 48, 2220 (2012).

    Article  CAS  Google Scholar 

  30. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009), ch. 37; pp. 679–681.

    Book  Google Scholar 

  31. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, 2011), ch. 3; pp. 111–229.

    Book  Google Scholar 

  32. J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu: Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58, 466 (1991).

    Article  CAS  Google Scholar 

  33. N. Wang and K. Komvopoulos: The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition. J. Mater. Res. 28, 2124 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the Computer Mechanics Laboratory (CML), University of California, Berkeley. The TEM/EELS studies were carried out at the National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (Proposal No. 1886). Work at the Molecular Foundry is supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy (Contract No. DE-AC02-05CH11231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Komvopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Komvopoulos, K. Friction, nanostructure, and residual stress of single-layer and multi-layer amorphous carbon films deposited by radio-frequency sputtering. Journal of Materials Research 31, 1857–1864 (2016). https://doi.org/10.1557/jmr.2015.404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.404

Navigation