Skip to main content
Log in

Effects of poly(para-dioxanone-co-L-lactide) on the in vitro hydrolytic degradation behaviors of poly(L-lactide)/poly(para-dioxanone) blends

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Poly(L-lactide)/poly(para-dioxanone) (PLLA/PPDO) (85/15 w/w) blends with 0, 1, 3, and 5 wt% poly(para-dioxanone-co-L-lactide) (PDOLLA) as a compatibilizer were prepared by solution coprecipitation. The in vitro hydrolytic degradation (HD) of blend bars with different contents of PDOLLA was studied by immersing the bars in a phosphate buffer solution (PBS) at pH 7.49. To estimate the degradation of blend bars, the weight loss, water absorption, thermal properties, surface morphology, and mechanical properties of blend bars, as well as the pH value changes of the PBS, were studied for 8 wk of HD. By adding 1 and 3 wt% PDOLLA, the weight loss of PLLA/PPDO (85/15 w/w) blends increased from 6.4 to 6.8 and 7.4% after 8 wk of HD, 6.2 and 15.6% increment, respectively, while, the average tensile strength of PLLA/PPDO (85/15 w/w) blends for 2–8 wk of HD increased from 25.8 to 29.0 MPa and 31.0 MPa, 12.4 and 20.2% increment, respectively. Considering their good mechanical properties and HD rate, the PLLA/PPDO (85/15 w/w) blends with 1 and 3 wt% PDOLLA are potential to be used as a medical implant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. J. Yang, F. Liu, L. Yang, and S. Li: Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-d,l-lactide) random copolymers with shape memory behavior. Eur. Polym. J. 46, 783 (2010).

    Article  CAS  Google Scholar 

  2. A. Javadi, Y. Srithep, S. Pilla, J. Lee, S. Gong, and L.S. Turng: Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng., C 30, 749 (2010).

    Article  CAS  Google Scholar 

  3. L.S. Nair and C.T. Laurencin: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762 (2007).

    Article  CAS  Google Scholar 

  4. H. Liu, F. Chen, B. Liu, G. Estep, and J. Zhang: Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 43, 6058 (2010).

    Article  CAS  Google Scholar 

  5. J.H. Yang, Y.D. Lee, R.S. Tsai, and H.B. Tsai: Enzymatic degradation of poly(l-lactide)/poly(tetramethylene glycol) triblock copolymer electrospun fiber. Mater. Chem. Phys. 133, 1127 (2012).

    Article  CAS  Google Scholar 

  6. J.H. Wu, M.S. Yen, M.C. Kuo, and B.H. Chen: Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater. Chem. Phys. 142, 726 (2013).

    Article  CAS  Google Scholar 

  7. R.M. Rasal, A.V. Janorkar, and D.E. Hirt: Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338 (2010).

    Article  CAS  Google Scholar 

  8. S. Wang, P. Ma, R. Wang, S. Wang, Y. Zhang, and Y. Zhang: Mechanical, thermal and degradation properties of poly(d,l-lactide)/poly(hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene glycol) blend. Polym. Degrad. Stab. 93, 1364 (2008).

    Article  CAS  Google Scholar 

  9. B. Meng, J. Tao, J. Deng, Z. Wu, and M. Yang: Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater. Lett. 65, 729 (2011).

    Article  CAS  Google Scholar 

  10. J. Lu, Z. Qiu, and W. Yang: Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties. Polymer 48, 4196 (2007).

    Article  CAS  Google Scholar 

  11. W.M. Gramlich, M.L. Robertson, and M.A. Hillmyer: Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43, 2313 (2010).

    Article  CAS  Google Scholar 

  12. M. Shibata, N. Teramoto, and Y. Inoue: Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends. Polymer 48, 2768 (2007).

    Article  CAS  Google Scholar 

  13. V. Arias, A. Hoglund, K. Odelius, and A.C. Albertsson: Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromolecules 15, 391 (2014).

    Article  CAS  Google Scholar 

  14. L. Jiang, M.P. Wolcott, and J. Zhang: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199 (2006).

    Article  CAS  Google Scholar 

  15. R. Gallego, S. López-Quintana, F. Basurto, K. Núñez, N. Villarreal, and J.C. Merino: Synthesis of new compatibilizers to poly(lactic acid) blends. Polym. Eng. Sci. 54, 522 (2014).

    Article  CAS  Google Scholar 

  16. W. Bai, D. Chen, Z. Zhang, Q. Li, D. Zhang, and C. Xiong: Poly(para-dioxanone)/inorganic particle composites as a novel biomaterial. J. Biomed. Mater. Res., Part B 90, 945 (2009).

    Article  CAS  Google Scholar 

  17. W. Bai, L.F. Zhang, Q. Li, D.L. Chen, and C.D. Xiong: In vitro hydrolytic degradation of poly(para-dioxanone)/poly(d,l-lactide) blends. Mater. Chem. Phys. 122, 79 (2010).

    Article  CAS  Google Scholar 

  18. W. Bai, Z.P. Zhang, Q. Li, D.L. Chen, H.C. Chen, N. Zhao, and C.D. Xiong: Miscibility, morphology and thermal properties of poly(para-dioxanone)/poly(D,L-lactide) blends. Polym. Int. 58, 183 (2009).

    Article  CAS  Google Scholar 

  19. W. Bai, D. Chen, Q. Li, H. Chen, S. Zhang, X. Huang, and C.D. Xiong: In vitro hydrolytic degradation of poly(para-dioxanone) with high molecular weight. J. Polym. Res. 16, 471 (2008).

    Article  CAS  Google Scholar 

  20. X. Xie, W. Bai, D. Chen, C. Xiong, and X. Pang: Effect of poly(para-dioxanone) on the hydrolytic degradation of poly(l-lactide). J. Polym. Environ. DOI: https://doi.org/10.1007/s10924-014-0670-y.

  21. A.P.T. Pezzin, G.O.R. Alberda van Ekenstein, C.A.C. Zavaglia, G. Brinke, and E.A.R. Duek: Poly(para-dioxanone) and poly(l-lactic acid) blends: Thermal, mechanical, and morphological properties. J. Appl. Polym. Sci. 88, 2744 (2003).

    Article  CAS  Google Scholar 

  22. A.P.T. Pezzin and E.A.R. Duek: Miscibility and hydrolytic degradation of bioreabsorbable blends of poly(p-dioxanone) and poly(L-lactic acid) prepared by fusion. J. Appl. Polym. Sci. 101, 1899 (2006).

    Article  CAS  Google Scholar 

  23. P. Ma, X. Cai, Y. Zhang, S. Wang, W. Dong, M. Chen, and P.J. Lemstra: In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 102, 145 (2014).

    Article  CAS  Google Scholar 

  24. X. Xie, W. Bai, A. Wu, D. Chen, C. Xiong, C. Tang, and X. Pang: Increasing the compatibility of poly(L-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-L-lactide). J. Appl. Polym. Sci. 132, 1029 (2015).

    Google Scholar 

  25. L. Zhang, C. Xiong, and X. Deng: Miscibility, crystallization and morphology of poly(β-hydroxybutyrate) and poly(d,l-lactide) blends. Polymer 37, 235 (1996).

    Article  CAS  Google Scholar 

  26. B. Wang, C. Ma, Z.C. Xiong, H.W. Zhou, Q.H. Zhou, and D.L. Chen: Regulating the physical and biological performances of poly(p-dioxanone) by copolymerization with L-phenylalanine. J. Appl. Polym. Sci. 130, 2311 (2013).

    Article  CAS  Google Scholar 

  27. D. Garlotta: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63 (2001).

    Article  CAS  Google Scholar 

  28. S.C. Chen, X.L. Wang, Y.Z. Wang, K.K. Yang, Z.X. Zhou, and G. Wu: In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl alcohol)-graft-poly(p-dioxanone) with high molecular weights. J. Biomed. Mater. Res., Part A 80, 453 (2007).

    Article  CAS  Google Scholar 

  29. H.Z. Zhao, J.Y. Hao, C.D. Xiong, and X.M. Deng: Different crystallinity of poly(d,l-lactide-co-p-dioxanone) copolymers acquired by control of chain microstructure. Chin. Chem. Lett. 20, 1506 (2009).

    Article  CAS  Google Scholar 

  30. E. Díaz, I. Sandonis, I. Puerto, and I. Ibáñez: In vitro degradation of PLLA/nHA composite scaffolds. Polym. Eng. Sci. DOI: https://doi.org/10.1002/pen.23806.

  31. S. Zhou, X. Deng, and H. Yang: Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) block copolymers: Characterization and their use as drug carriers for a controlled delivery system. Biomaterials 24, 3563 (2003).

    Article  CAS  Google Scholar 

  32. H. Peng, S. Zhou, T. Guo, Y. Li, X. Li, J. Wang, and J. Weng: In vitro degradation and release profiles for electrospun polymeric fibers containing paracetanol. Colloids Surf., B 66, 206 (2008).

    Article  CAS  Google Scholar 

  33. X. Deng, S. Zhou, X. Li, J. Zhao, and M. Yuan: In vitro degradation and release profiles for poly- dl -lactide-poly(ethylene glycol) microspheres containing human serum albumin. J. Controlled Release 71, 165 (2001).

    Article  CAS  Google Scholar 

  34. Y. Bai, P. Luo, P. Wang, W. Bai, C. Xiong, and C. Tang: Hydrolytic degradation of PPDO/PDLLA blends containing the compatibilizer PLADO. J. Polym. Environ. 21, 1016 (2013).

    Article  CAS  Google Scholar 

  35. L. Dai, D. Li, and J. He: Degradation of graft polymer and blend based on cellulose and poly(l-lactide). J. Appl. Polym. Sci. 130, 2257 (2013).

    Article  CAS  Google Scholar 

  36. P. Sriromreun, A. Petchsuk, M. Opaprakasit, and P. Opaprakasit: Standard methods for characterizations of structure and hydrolytic degradation of aliphatic/aromatic copolyesters. Polym. Degrad. Stab. 98, 169 (2013).

    Article  CAS  Google Scholar 

  37. P. Wan, C. Yuan, L.L. Tan, Q. Li, and K. Yang: Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants. Compos. Sci. Technol. 98, 36 (2014).

    Article  CAS  Google Scholar 

  38. Y. Huang, C. Zhang, Y. Pan, Y. Zhou, L. Jiang, and Y. Dan: Effect of NR on the hydrolytic degradation of PLA. Polym. Degrad. Stab. 98, 943 (2013).

    Article  CAS  Google Scholar 

  39. Y.S. Liu, Q.L. Huang, A. Kienzle, W.E.G. Muller, and Q.L. Feng: In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater. Sci. Eng., C 38, 227 (2014).

    Article  CAS  Google Scholar 

  40. J.L. Atkinson and S. Vyazovkin: Dynamic mechanical analysis and hydrolytic degradation behavior of linear and branched poly(L-lactide)s and poly(L-lactide-co-glycolide)s. Macromol. Chem. Phys. 214, 835 (2013).

    Article  CAS  Google Scholar 

  41. Y. Li, S. Li, L. Ji, B. He, and Z. Gu: Studies on the degradation of poly(L-lactide-r-trimethene carbonate) copolymers. Chin. J. Polym. Sci. 31, 966 (2013).

    Article  CAS  Google Scholar 

  42. S. Mattioli, J.M. Kenny, and I. Armentano: Plasma surface modification of porous PLLA films: Analysis of surface properties and in vitro hydrolytic degradation. J. Appl. Polym. Sci. 125, E239 (2012).

    Article  CAS  Google Scholar 

  43. C.L. Wanamaker, W.B. Tolman, and M.A. Hillmyer: Hydrolytic degradation behavior of a renewable thermoplastic. Biomacromolecules 10, 443 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (51103156) and the West Light Foundation of The Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Bai.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2015.31.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Bai, W., Tang, C. et al. Effects of poly(para-dioxanone-co-L-lactide) on the in vitro hydrolytic degradation behaviors of poly(L-lactide)/poly(para-dioxanone) blends. Journal of Materials Research 30, 860–868 (2015). https://doi.org/10.1557/jmr.2015.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.31

Navigation