Skip to main content
Log in

Fabrication of thermoplastic polyurethane tissue engineering scaffold by combining microcellular injection molding and particle leaching

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microcellular injection molding, a process capable of mass-producing complex plastic parts, and particle leaching methods were combined to fabricate porous thermoplastic polyurethane tissue engineering scaffolds. Water soluble polyvinyl alcohol (PVOH) and sodium chloride (NaCl) were used as porogens to improve the porosity and interconnectivity as well as the hydrophilicity of the scaffolds. It was found in the study that the microcellular injection molding process was effective at producing high pore density and porosity. The addition of PVOH decreased the pore diameter and increased the pore density. Furthermore, scaffolds with NaCl and PVOH porogens showed more interconnected pores. The 3T3 fibroblast cell culture was used to confirm the biocompatibility of the scaffolds. Residual PVOH content after leaching increased the hydrophilicity of the scaffolds and further improved cell adhesion and proliferation. The resulting scaffolds offer an alternative scalable tissue scaffold fabrication method for soft tissue scaffold production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. X.W. Wang, P. Lin, Q.H. Yao, and C.Y. Chen: Development of small-diameter vascular grafts. World J. Surg. 31, 682 (2007).

    Article  Google Scholar 

  2. D.W. Jang, T.H. Nguyen, S.K. Sarkar, and B.T. Lee: Microwave sintering and in vitro study of defect-free stable porous multilayered HAp-ZrO2 artificial bone scaffold. Sci. Technol. Adv. Mat. 13, (2012).

  3. B. Li, J.M. Davidson, and S.A. Guelcher: The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 30, 3486 (2009).

    Article  CAS  Google Scholar 

  4. Z.C. Tian, Y.L. Zhu, J.J. Qiu, H.F. Guan, L.Y. Li, S.C. Zheng, X.H. Dong, and J. Xiao: Synthesis and characterization of UPPE-PLGA-rhBMP2 scaffolds for bone regeneration. J. Huazhong U. Sci.-Med. 32, 563 (2012).

    Article  CAS  Google Scholar 

  5. A.M. Rosado and L.P. Brewster: Regeneration: Letting the scaffold do the work. J. Surg. Res. 180, 49 (2013).

    Article  Google Scholar 

  6. Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, and S. Ramakrishna: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6, 2583 (2005).

    Article  CAS  Google Scholar 

  7. S.F. Yang, K.F. Leong, Z.H. Du, and C.K. Chua: The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng. 7, 679 (2001).

    Article  CAS  Google Scholar 

  8. B. Gupta, S. Patra, and A.R. Ray: Preparation of porous polycaprolactone tubular matrix by salt leaching process. J. Appl. Polym. Sci. 126, 1505 (2012).

    Article  CAS  Google Scholar 

  9. J.K. Sherwood, S.L. Riley, R. Palazzolo, S.C. Brown, D.C. Monkhouse, M. Coates, L.G. Griffith, L.K. Landeen, and A. Ratcliffe: A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23, 4739 (2002).

    Article  CAS  Google Scholar 

  10. X.X. Shao, D.W. Hutmacher, S.T. Ho, J.C.H. Goh, and E.H. Lee: Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27, 1071 (2006).

    Article  CAS  Google Scholar 

  11. D. Odedra, L. Chiu, L. Reis, F. Rask, K. Chiang, and M. Radisic: Cardiac tissue engineering. In Biomaterials for Tissue Engineering Applications: A Review of the Past and Future Trends, J.A. Burdick and R.L. Mauck ed.; Springer, New York, 2011; p. 421.

    Chapter  Google Scholar 

  12. X.H. Liu and P.X. Ma: Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32, 477 (2004).

    Article  Google Scholar 

  13. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, and S. Ramakrishna: Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering. Mat. Sci. Eng. C-Mater. 30, 1129 (2010).

    Article  CAS  Google Scholar 

  14. L. Shor, E.D. Yildirim, S. Guceri, and W. Sun: Precision extruding deposition for freeform fabrication of PCL and PCL-HA tissue scaffolds. Biological and Medical Physics. Biomedical Engineering, (Springer-Verlag, New York, 2010); p. 91.

    Google Scholar 

  15. A. Yeo, W.J. Wong, and S.H. Teoh: Surface modification of PCL-TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. J. Biomed. Mater. Res. A 93, 1358 (2010).

    Google Scholar 

  16. D. Ajami-Henriquez, M. Rodriguez, M. Sabino, R.V. Castillo, A.J. Muller, A. Boschetti-de-Fierro, C. Abetz, V. Abetz, and P. Dubois: Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J. Biomed. Mater. Res. A 87, 405 (2008).

    Article  Google Scholar 

  17. M. Navarro, C. Aparicio, M. Charles-Harris, M.P. Ginebra, E. Engel, and J.A. Planell: Development of a biodegradable composite scaffold for bone tissue engineering: Physicochemical, topographical, mechanical, degradation, and biological properties. Adv. Polym. Sci. 200, 209 (2006).

    Article  CAS  Google Scholar 

  18. A. Nieponice, L. Soletti, J.J. Guan, Y. Hong, B. Gharaibeh, T.M. Maul, J. Huard, W.R. Wagner, and D.A. Vorp: In Vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng. Pt. A 16, 1215 (2010).

    Article  CAS  Google Scholar 

  19. C. Danielsson, S. Ruault, M. Simonet, P. Neuenschwander, and P. Frey: Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials 27, 1410 (2006).

    Article  CAS  Google Scholar 

  20. T. Hentschel and H. Munstedt: Thermoplastic polyurethane — the material used for the Erlanger silver catheter. Infection 27, S43 (1999).

    Article  CAS  Google Scholar 

  21. P.B. Maurus and C.C. Kaeding: Bioabsorbable implant material review. Oper. Techn. Sport. Med. 12, 158 (2004).

    Article  Google Scholar 

  22. N. Lamba, K. Woodhouse, and S. Cooper: Polyurethanes in Biomedical Applications (CRC Press, New York, 1998).

    Google Scholar 

  23. C. Huang, R. Chen, Q.F. Ke, Y. Morsi, K.H. Zhang, and X.M. Mo: Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloid Surface B 82, 307 (2011).

    Article  CAS  Google Scholar 

  24. D.K. Dempsey, C.J. Schwartz, R.S. Ward, A.V. Iyer, J.P. Parakka, and E.M. Cosgriff-Hernandez: Micropatterning of electrospun polyurethane fibers through control of surface topography. Macromol. Mater. Eng. 295, 990 (2010).

    Article  CAS  Google Scholar 

  25. C.A. Martinez-Perez, P.E. Garcia-Casillas, P. Romero, A. Martinez-Villafane, A.D. Moller, and J. Romero-Garcia: Porous biodegradable polyurethane scaffolds prepared by thermally induced phase separation. J. Adv. Mater.-Covina 1, 5 (2006).

    Google Scholar 

  26. D. Sin, X.G. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, and T. Friis: Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mat. Sci. Eng. C 30, 78 (2010).

    Article  CAS  Google Scholar 

  27. K. He and X.H. Wang: Rapid prototyping of tubular polyurethane and cell/hydrogel constructs. J. Bioact. Compat. Pol. 26, 363 (2011).

    Article  CAS  Google Scholar 

  28. S. Ito, K. Matsunaga, M. Tajima, and Y. Yoshida: Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 106, 3581 (2007).

    Article  CAS  Google Scholar 

  29. S. Leicher, J. Will, H. Haugen, and E. Wintermantel: MuCell (R) technology for injection molding: A processing method for polyether-urethane scaffolds. J. Mater. Sci. 40, 4613 (2005).

    Article  CAS  Google Scholar 

  30. L.J. Gerhardt, C.W. Manke, and E. Gulari: Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide. J. Polym. Sci. Pol. Phys. 35, 523 (1997).

    Article  CAS  Google Scholar 

  31. L.B. Wu, D.Y. Jing, and J.D. Ding: A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 27, 185 (2006).

    Article  CAS  Google Scholar 

  32. S.J. Liu, C.L. Hsueh, S.W.N. Ueng, S.S. Lin, and J.K. Chen: Manufacture of solvent-free polylactic-glycolic acid (PLGA) scaffolds for tissue engineering. Asia-Pac. J. Chem. Eng. 4, 154 (2009).

    Article  CAS  Google Scholar 

  33. A. Kramschuster and L.S. Turng: An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J. Biomed. Mater. Res. B. 92, 366 (2010).

    Google Scholar 

  34. H.E. Naguib and C.B. Park: Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 42, 1481 (2002).

    Article  CAS  Google Scholar 

  35. P.J. Gong and M. Ohshima: The effect of interfacial miscibility on the cell morphology of polyethylene terephthalate/bisphenol a polycarbonate blend foams. J. Polym. Sci. Pol. Phys. 50, 1173 (2012).

    Article  CAS  Google Scholar 

  36. S.N. Leung, C.B. Park, and H. Li: Numerical simulation of polymeric foaming processes using modified nucleation theory. Plast. Rubber Compos. 35, 93 (2006).

    Article  CAS  Google Scholar 

  37. S.H. Oh, S.G. Kang, E.S. Kim, S.H. Cho, and J.H. Lee: Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24, 4011 (2003).

    Article  CAS  Google Scholar 

  38. F.J. O’Brien, B.A. Harley, I.V. Yannas, and L.J. Gibson: The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support of the Wisconsin Institute for Discovery (WID), the China Scholarship Council, the National Nature Science Foundation of China (No.51073061, No.21174044), the Guangdong Nature Science Foundation (No. S2013020013855, No. 9151064101000066), and the National Basic Research Development Program 973 (No. 2012CB025902) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lih-Sheng Turng or Xiang-Fang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, HY., Jing, X., Salick, M.R. et al. Fabrication of thermoplastic polyurethane tissue engineering scaffold by combining microcellular injection molding and particle leaching. Journal of Materials Research 29, 911–922 (2014). https://doi.org/10.1557/jmr.2014.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.67

Navigation