Skip to main content
Log in

Bilayers of transition metal dichalcogenides: Different stackings and heterostructures

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Besides graphene and hexagonal boron nitride, transition metal dichalcogenides (TMDs) also exhibit a layered structure in which the layers weakly interact via van der Waals forces. Semiconducting TMDs in bulk are indirect band gap materials. However, an isolated sheet exhibits a direct gap. This particular behavior makes them very attractive in terms of optical properties. Moreover, NbS2 and NbSe2 in bulk and their monolayers are metallic. Density functional theory calculations were carried out to study different TMD bilayer systems. First, different bilayer geometries with different stackings were considered. It was found that the indirect and direct band gaps compete; however, the indirect band gap always dominates. Surprisingly, bilayer heterostructures of different TMDs have been found to possess direct band gaps. Finally, heterobilayers composed of one metallic monolayer and a semiconducting layer are predicted as novel metallic van der Waals solids that might find applications in new two-dimensional nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. J.A. Wilson and A.D. Yoffe: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18(73), 193 (1969).

    Article  CAS  Google Scholar 

  2. R.F. Frindt: Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928 (1966).

    Article  CAS  Google Scholar 

  3. R.F. Frindt: Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140(2A), 536 (1965).

    Article  CAS  Google Scholar 

  4. P. Joensen, R.F. Frindt, and S.R. Morrison: Single-layer MoS2. Mater. Res. Bull. 21(4), 457 (1986).

    Article  CAS  Google Scholar 

  5. P.D. Fleischauer: Fundamental-aspects of the electronic-structure, materials properties and lubrication performance of sputtered MoS2 Films. Thin Solid Films 154(1–2), 309 (1987).

    Article  CAS  Google Scholar 

  6. J.M. Martin, C. Donnet, T. Lemogne, and T. Epicier: Superlubricity of molybdenum-disulfide. Phys. Rev. B 48(14), 10583 (1993).

    Article  CAS  Google Scholar 

  7. L. Rapoport, N. Fleischer, and R. Tenne: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15(18), 1782 (2005).

    Article  CAS  Google Scholar 

  8. R. Tenne, L. Margulis, M. Genut, and G. Hodes: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360(6403), 444 (1992).

    Article  CAS  Google Scholar 

  9. L. Margulis, G. Salitra, R. Tenne, and M. Talianker: Nested fullerene-like structures. Nature 365(6442), 113 (1993).

    Article  CAS  Google Scholar 

  10. R. Tenne, L. Margulis, and G. Hodes: Fullerene-like nanocrystals of tungsten disulfide. Adv. Mater. 5(5), 386 (1993).

    Article  CAS  Google Scholar 

  11. L. Mattheis: Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8(8), 3719 (1973).

    Article  Google Scholar 

  12. F. Wypych and R. Schollhorn: 1T-MOS2, a new metallic modification of molybdenum-disulfide. J. Chem. Soc. Chem. Commun. (19), 1386 (1992).

  13. D. Yang, S.J. Sandoval, W.M.R. Divigalpitiya, J.C. Irwin, and R.F. Frindt: Structure of single-molecular-layer MOS2. Phys. Rev. B 43(14), 12053 (1991).

    Article  CAS  Google Scholar 

  14. R. Bissessur, M.G. Kanatzidis, J.L. Schindler, and C.R. Kannewurf: Encapsulation of polymers into MOS2 and metal to insulator transition in metastable MOS2. J. Chem. Soc. Chem. Commun. (20), 1582 (1993).

  15. V. Petkov, S.J.L. Billinge, J. Heising, and M.G. Kanatzidis: Application of atomic pair distribution function analysis to materials with intrinsic disorder. Three-dimensional structure of exfoliated-restacked WS2: Not just a random turbostratic assembly of layers. J. Am. Chem. Soc. 122(47), 11571 (2000).

    Article  CAS  Google Scholar 

  16. D.J. Rahn, S. Hellmann, M. Kallane, C. Sohrt, T.K. Kim, L. Kipp, and K. Rossnagel: Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85(22), 224532 (2012).

    Article  CAS  Google Scholar 

  17. T.K. Wieting and M. Schluter: Electrons and Phonons in Layered Crystal Structures (D. Reidel, Dordrecht, Netherlands, 1979).

    Book  Google Scholar 

  18. G. Seifert, H. Terrones, M. Terrones, and T. Frauenheim: Novel NbS2 metallic nanotubes. Solid State Commun. 115(12), 635 (2000).

    Article  CAS  Google Scholar 

  19. D.E. Moncton, J.D. Axe, and F.J. Disalvo: Neutron-scattering study of charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2. Phys. Rev. B 16(2), 801 (1977).

    Article  CAS  Google Scholar 

  20. C.D. Malliakas and M.G. Kanatzidis: Nb-Nb interactions define the charge density wave structure of 2H-NbSe2. J. Am. Chem. Soc. 135(5), 1719 (2013).

    Article  CAS  Google Scholar 

  21. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  CAS  Google Scholar 

  22. H.L. Zeng, J.F. Dai, W. Yao, D. Xiao, and X.D. Cui: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7(8), 490 (2012).

    Article  CAS  Google Scholar 

  23. K.F. Mak, K.L. He, J. Shan, and T.F. Heinz: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494 (2012).

    Article  CAS  Google Scholar 

  24. H. Wang, L.L. Yu, Y.H. Lee, Y.M. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, and T. Palacios: Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674 (2012).

    Article  CAS  Google Scholar 

  25. W.S. Hwang, M. Remskar, R.S. Yan, V. Protasenko, K. Tahy, S.D. Chae, P. Zhao, A. Konar, H.L. Xing, A. Seabaugh, and D. Jena: Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101(1), 013107 (2012).

    Article  CAS  Google Scholar 

  26. Y.J. Zhang, J.T. Ye, Y. Matsuhashi, and Y. Iwasa: Ambipolar MoS2 thin flake transistors. Nano Lett. 12(3), 1136 (2012).

    Article  CAS  Google Scholar 

  27. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey: High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788 (2012).

    Article  CAS  Google Scholar 

  28. Q.A. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  29. N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones: Photosensor device based on few-layered WS2 Films. Adv. Funct. Mater. (2013) DOI: 10.1002/adfm.201300760.

  30. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013).

    Article  Google Scholar 

  31. R.A. Bromley, A.D. Yoffe, and R.B. Murray: Band structures of some transition-metal dichalcogenides. III. Group VIA-trigonal prism materials. J. Phys. C: Solid State Phys. 5(7), 759 (1972).

    Article  CAS  Google Scholar 

  32. S. Lebegue and O. Eriksson: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79(11), 115409 (2009).

    Article  CAS  Google Scholar 

  33. T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Voss, P. Kruger, A. Mazur, and J. Pollmann: Band structure of MoS2, MoSe2, and alpha-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 64(23), 235305 (2001).

    Article  CAS  Google Scholar 

  34. H. Jiang: Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. J. Phys. Chem. C 116(14), 7664 (2012).

    Article  CAS  Google Scholar 

  35. T. Cheiwchanchamnangij and W.R.L. Lambrecht: Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85(20), 205302 (2012).

    Article  CAS  Google Scholar 

  36. A. Enyashin, S. Gemming, and G. Seifert: Nanosized allotropes of molybdenum disulfide. Eur. Phys. J. Spec. Top. 149, 103 (2007).

    Article  Google Scholar 

  37. H. Terrones, F. Lopez-Urias, and M. Terrones: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, (2013).

  38. J.C. Wildervanck and F. Jellinek: Preparation and crystallinity of molybdenum and tungsten sulfides. Z. Anorg. Allg. Chem. 328(5–6), 309 (1964).

    Article  CAS  Google Scholar 

  39. P.R. Bonneau, R.F. Jarvis, and R.B. Kaner: Rapid solid-state synthesis of materials from molybdenum-disulfide to refractories. Nature 349(6309), 510 (1991).

    Article  CAS  Google Scholar 

  40. P.B. James and M.T. Lavik: Crystal structure of MoSe2. Acta Crystall. 16(11), 1183 (1963).

    Article  CAS  Google Scholar 

  41. A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, H.R. Gutiérrez, N.R. Pradhan, L. Balicas, T.E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones: Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 7(6), 5235 (2013).

    Article  CAS  Google Scholar 

  42. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, and A. Mishchenko: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100 (2013).

    Article  CAS  Google Scholar 

  43. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567 (2005).

    CAS  Google Scholar 

  44. D.M. Ceperley and B.J. Alder: Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980).

    Article  CAS  Google Scholar 

  45. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981).

    Article  CAS  Google Scholar 

  46. F. Ortmann, F. Bechstedt, and W.G. Schmidt: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006).

    Article  CAS  Google Scholar 

  47. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for the exchange and correlation. Phys. Rev. B 46(11), 6671 (1992).

    Article  CAS  Google Scholar 

  48. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang: First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B 406(11), 2254 (2011).

    Article  CAS  Google Scholar 

  49. S.K. Mahatha, K.D. Patel, and K.S.R. Menon: Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies. J. Phys. Condens. Matter 24(47), 475504 (2012).

    Article  CAS  Google Scholar 

  50. K. Refson, P.R. Tulip, and S.J. Clark: Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 73(15), 155114 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the U.S. Army Research Office MURI Grant No. W911NF-11-1-0362, supported in part by the Materials Research Computing and Cyberinfrastructure unit of Information Technology Services and Penn-State Center for Nanoscale Science. M.T. also acknowledges support from the Penn State Center for Nanoscale Science for seed grant on 2-D layered materials (Grant No. DMR-0820404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Terrones.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org_jmr_policy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrones, H., Terrones, M. Bilayers of transition metal dichalcogenides: Different stackings and heterostructures. Journal of Materials Research 29, 373–382 (2014). https://doi.org/10.1557/jmr.2013.284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.284

Navigation