Skip to main content
Log in

A comparative study of Y3+- or/and La3+-doped CeO2–ZrO2-based solid solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ce0.35Zr0.65−xRExO2 (RE = Y and La; x = 0 and 0.10) and Ce0.35Zr0.50Y0.075La0.075O2 were prepared by a coprecipitation method. The textures, structures, oxygen storage capacity (OSC), and redox properties of all samples were investigated using Brunauer–Emmett–Teller surface area characterization, x-ray diffraction (XRD), Raman spectra, temperature-programmed technique, and oxygen pulse reaction. The results showed that the fresh Ce0.35Zr0.65O2 has cubic phase, 434 μmol/g of OSC, 82 m2/g of surface area, and good redox properties; after aging at 1000 °C, Ce0.35Zr0.65O2 still has cubic phase, 418 μmol/g of OSC, and 50 m2/g of surface area; when Y3+ or La3+ is added to CeO2–ZrO2, the aged Ce0.35Zr0.65−xRExO2 (RE = Y and La; x = 0 and 0.10) still remains cubic phase, high OSC, and large surface area (47 m2/g); when Y3+ and La3+ are simultaneously added into CeO2–ZrO2, a stable solid solution with cubic phase is formed and has 459 μmol/g of OSC; and the aged Ce0.35Zr0.50Y0.075La0.075O2 reaches to 60 m2/g of surface area and has 390 μmol/g of OSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.S. Gandhi and M. Shelef: The role of research in the development of new generation automotive catalysts. Stud. Surf. Sci. Catal. 30, 199–214 (1987).

    Article  CAS  Google Scholar 

  2. G. Kim: Ceria-promoted three-way catalysts for auto exhaust emission control. Ind. Eng. Chem. Prod. Res. Dev. 21, 267–274 (1982).

    Article  CAS  Google Scholar 

  3. M. Pijolat, M. Prin, M. Soustelle, O. Touret, and P. Nortier: Thermal stability of doped ceria: Experiment and modeling. J. Chem. Soc., Faraday Trans. 91, 3941–3948 (1995).

    Article  CAS  Google Scholar 

  4. P. Fornasiero, R. Di Monte, G. Ranga Rao, J. Kašpar, S. Meriani, A. Trovarelli, and M. Graziani: Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties. J. Catal. 151, 168–177 (1995).

    Article  CAS  Google Scholar 

  5. T. Murota, T. Hasegawa, S. Aozasa, H. Matsui, and M. Motoyama: Production method of cerium oxide with high storage capacity of oxygen and its mechanism. J. Alloys Compd. 193, 298–299 (1993).

    Article  CAS  Google Scholar 

  6. S. Rossignol, Y. Madier, and D. Duprez: Preparation of zirconia-ceria materials by soft chemistry. Catal. Today 50, 261–270 (1999).

    Article  CAS  Google Scholar 

  7. J. Kašpar, R. Di Monte, P. Fornasiero, M. Graziani, H. Bradshaw, and C. Norman: Dependency of the oxygen storage capacity in zirconia–ceria solid solutions upon textural properties. Top. Catal. 16-17, 83–87 (2001).

    Article  Google Scholar 

  8. G. Balducci, J. Kašpar, P. Fornasiero, M. Graziani, M.S. Islam, and J.D. Gale: Computer simulation studies of bulk reduction and oxygen migration in CeO2−ZrO2 solid solutions. J. Phys. Chem. B 101, 1750–1753 (1997).

    Article  CAS  Google Scholar 

  9. G. Balducci, J. Kašpar, P. Fornasiero, M. Graziani, and M.S. Islam: Surface and reduction energetics of the CeO2−ZrO2 catalysts. J. Phys. Chem. B 102, 557–561 (1998).

    Article  CAS  Google Scholar 

  10. L.N. Ikryyannikova, A.A. Aksenov, G.L. Markaryan, G.P. Muravieva, B.G. Kostyuk, A.N. Kharlanov, and E.V. Lunina: The red-ox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M = Y, La) solid solutions. Appl. Catal., A 210, 225–235 (2010).

    Article  Google Scholar 

  11. H. He, H.X. Dai, and C.T. Au: Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 90, 245–254 (2004).

    Article  CAS  Google Scholar 

  12. H. He, H.X. Dai, L.H. Ng, K.W. Wong, and C.T. Au: Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: An investigation on performance and redox properties. J. Catal. 206, 1–13 (2002).

    Article  CAS  Google Scholar 

  13. P. Vidmar, P. Fornasiero, J. Kaspar, G. Gubitosa, and M. Graziani: Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J. Catal. 171, 160–168 (1997).

    Article  CAS  Google Scholar 

  14. J.X. Guo, D.D. Wu, L. Zhang, M.C. Gong, M. Zhao, and Y.Q. Chen: Preparation of nanometric CeO2-ZrO2-Nd2O3 solid solution and its catalytic performances. J. Alloys Compd. 460, 485–490 (2008).

    Article  CAS  Google Scholar 

  15. J.X. Guo, S.H. Yuan, M.C. Gong, M. Shen, J.B. Zhong, and Y.Q. Chen: Influence of Ce0.35Zr0.55Y0.10 solid solution on performance of Pt-Rh three-way catalysts. J. Rare Earths 25, 179–183 (2007).

    Article  Google Scholar 

  16. J.X. Guo, S.H. Yuan, M.C. Gong, L. Zhang, D.D. Wu, M. Zhao, and Y.Q. Chen: Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts. Acta Phys. Chim. Sin. 23, 73–78 (2007).

    Article  CAS  Google Scholar 

  17. G.A. Turko, A.S. Ivanva, L.M. Plyasova, G.S. Litvak, and V.A. Rogov: Synthesis and characterization of fluorite-like Ce-Zr-Y-La-O systems. Kinet. Catal. 46, 884–890 (2005).

    Article  CAS  Google Scholar 

  18. J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber: Raman and X-ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd and Tb. J. Appl. Phys. 76, 2435–2441 (1994).

    Article  CAS  Google Scholar 

  19. H.C. Yao and Y.F.Y. Yao: Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 86, 254–265 (1984).

    Article  CAS  Google Scholar 

  20. H. Zhu, Z. Qin, W. Shan, W. Shen, and J. Wang: Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents. J. Catal. 225, 267–277 (2004).

    Article  CAS  Google Scholar 

  21. M. Teng, L. Luo, and X. Yang: Synthesis of mesoporous Ce1-xZrxO2 (x = 0.2-0.5) and catalytic properties of CuO based catalysts. Microporous Mesoporous Mater. 119, 158–164 (2009).

    Article  CAS  Google Scholar 

  22. H. He, H.X. Dai, K.W. Wong, and C.T. Au: RE0.6Zr0.4−xYxO2 (RE = Ce, Pr; x = 0, 0.05) solid solutions: An investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties. Appl. Catal., A 251, 61–74 (2003).

    Article  CAS  Google Scholar 

  23. C. Li, G. Zhou, L. Wang, S. Dong, J. Li, and T. Cheng: Effect of ceria on the MgO-γ-Al2O3 supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination. Appl. Catal., A 400, 104–110 (2011).

    Article  CAS  Google Scholar 

  24. Y. Teraoka, M. Yoshimatsu, N. Yamazoe, and T. Seiyama: Oxygen-sorptive properties and defect structure of perovskite-type oxides. Chem. Lett. 13, 893–896 (1984).

    Article  Google Scholar 

  25. H.M. Zhang, Y. Shimizu, Y. Teraoka, N. Miura, and N. Yamazoe: Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 perovskite-type oxides. J. Catal. 121, 432–440 (1990).

    Article  CAS  Google Scholar 

  26. L. Xue, C. Zhang, H. He, and Y. Teraoka: Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal., B 75, 167–174 (2007).

    Article  CAS  Google Scholar 

  27. H. Vidal, J. Kašpar, M. Pijolat, G. Colonb, S. Bernal, A. Cordón, V. Perrichon, and F. Fally: Redox behavior of CeO2–ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts. Appl. Catal., B 27, 49–63 (2000).

    Article  CAS  Google Scholar 

  28. H.R. Aghabozorg, F. Sakhaie, M. Ramezani, and H. Aghabozorg: Doping of Sm into CeO2 nanotubes up to 50%. J. Sci. I. A. U. (JSIAU) 19, 47–52 (2009).

    Google Scholar 

  29. M. Yashima and T. Wakitak: Atomic displacement parameters and structural disorder of oxygen ions in the CexZr1−xO2 solid solutions (0.12 ≤ x ≤ 1.0): Possible factors of high catalytic activity of ceria-zirconia catalysts. Appl. Phys. Lett. 94, 171902 (2009).

    Article  CAS  Google Scholar 

  30. M. Yashima, H. Arashi, M. Kakihana, and M. Yoshimura: Raman scattering study of cubic-tetragonal phase transition in Zr1-xCexO2 solid solution. J. Am. Ceram. Soc. 77, 1067–1071 (1994).

    Article  CAS  Google Scholar 

  31. T. Nakatani, H. Okamoto, and R. Ota: Preparation of CeO2-ZrO2 mixed oxide powders by the coprecipitation method for the purification catalysts of automotive emission. J. Sol-Gel Sci. Technol. 26, 859–863 (2003).

    Article  CAS  Google Scholar 

  32. J. Kašpar, P. Fornasiero, and M. Graziani: Use of CeO2-based oxides in the three-way catalysis. Catal. Today 50, 285–298 (1999).

    Article  Google Scholar 

  33. T. Masui, T. Ozaki, K. Machida, and G. Adachi: Preparation of ceria–zirconia sub-catalysts for automotive exhaust cleaning. J. Alloys Compd. 303-304, 49–55 (2000).

    Article  CAS  Google Scholar 

  34. G. Vlaic, R.D. Monte, P. Fornasiero, E. Fonda, J. Kašpar, and M. Graziani: Redox property–local structure relationships in the Rh-loaded CeO2–ZrO2 mixed oxides. J. Catal. 182, 378–389 (1999).

    Article  CAS  Google Scholar 

  35. J.L. Ayastuy, A. Gurbani, M.P. González-Marcos, and M.A. Gutiérrez-Ortiz: Selective CO oxidation in H2 streams on CuO/CexZr1-xO2 catalysts: Correlation between activity and low temperature reducibility. Int. J. Hydrogen Energy 37, 1993–2006 (2012).

    Article  CAS  Google Scholar 

  36. X. Wang, Q. Kang, and D. Li: Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catal. Commun. 9, 2158–2162 (2008).

    Article  CAS  Google Scholar 

  37. L. Cao, L. Pan, C. Ni, Z. Yuan, and S. Wang: Autothermal reforming of methane over Rh/Ce0.5Zr0.5O2 catalyst: Effects of the crystal structure of the supports. Fuel Process. Technol. 91, 306–312 (2010).

    Article  CAS  Google Scholar 

  38. H. Zhang, Q. Yang, B. Zhang, and S. Lu: Raman spectroscopic investigation of lanthana-doped neodymium-yttria transparent ceramics. J. Raman Spectrosc. 42, 1384–1387 (2011).

    Article  CAS  Google Scholar 

  39. G.L. Markaryan, L.N. Ikryannikova, G.P. Muravieva, A.O. Turakulova, B.G. Kostyuk, E.V. Lunina, V.V. Lunin, E. Zhilinskaya, and A. Aboukaïs: Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions. Colloids Surf., A 151, 435–447 (1999).

    Article  CAS  Google Scholar 

  40. S.P. Kulyova, E.V. Lunina, V.V. Lunin, B.G. Kostyuk, G.P. Muravyova, and A.N. Kharlanov: Redox behavior of Y0.05Ce0.1Zr0.85O2 and Y0.1Ce0.1Zr0.8O2 system catalysts doped with copper(II). Chem. Mater. 13, 1491–1496 (2001).

    Article  CAS  Google Scholar 

  41. D. Terribile, A. Trovarelli, J. Llorcha, C. de Leitenburg, and G. Dolcctti: The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J. Catal. 178, 299–308 (1998).

    Article  CAS  Google Scholar 

  42. E. Mamontov, T. Egami, A. Brezny, M. Koranne, and S. Tyagi: Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 104, 11110–11116 (2000).

    Article  CAS  Google Scholar 

  43. P. Fornasiero, T. Montini, M. Graziani, J. Kašpar, A.B. Hungria, A. Martinez-Arias, and J.C. Conesa: Effects of thermal pretreatment on the redox behaviour of Ce0.5Zr0.5O2: Isotopic and spectroscopic studies. Phys. Chem. Chem. Phys. 4, 149–159 (2002).

    Article  CAS  Google Scholar 

  44. G. Balducci, P. Fornasiero, R. Di Monte, J. Kašpar, S. Meriani, and M. Grazini: An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures. Catal. Lett. 33, 193–200 (1995).

    Article  CAS  Google Scholar 

  45. L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marcì, L. Retailleau, and A. Giroir-Fendler: Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal., A 347, 81–88 (2008).

    Article  CAS  Google Scholar 

  46. C. Binet, M. Daturi, and J.C. Lavalley: IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 50, 207–225 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the National Nature Science Youth Fund of China (Grant No. 21173153). We would like to thank Professor Zhu, College of Materials Science and Engineering, Sichuan University for XRD measurements, and Dr. Wu, Analytical and Testing Center, Sichuan University for Raman spectra characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Shi, Z., Wu, D. et al. A comparative study of Y3+- or/and La3+-doped CeO2–ZrO2-based solid solution. Journal of Materials Research 28, 887–896 (2013). https://doi.org/10.1557/jmr.2012.435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.435

Navigation