Skip to main content

Advertisement

Log in

Growth of in situ multilayer diamond films by varying substrate-filament distance in hot-filament chemical vapor deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single and multilayer diamond films were grown on silicon by varying substrate distance in hot-filament chemical vapor deposition. The grown films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. From SEM surface images, it was observed that the films grown at substrate distances of 8, 7, and 6 mm and temperatures of 740, 780, and 830 °C possessed cauliflower, pseudocubes, and finally well-faceted cubes morphology. SEM fracture cross-sectional investigations revealed that growth of pseudocubes initiated on the top of cauliflower structure. By using the parametric relations gathered from single layer diamond growth studies, first time, multilayer diamond coatings were grown in situ with tunable thickness by only varying the substrate distance from filament assembly during deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.C. Angus and C.C. Hayman: Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913–921 (1988).

    Article  CAS  Google Scholar 

  2. K. Miyoshi, R. L.C. Wu, and A. Garscadden: Friction and wear of diamond and diamondlike carbon coatings. Surf. Coat. Technol. 54/55, 428–334 (1992).

    Article  Google Scholar 

  3. R.J. Nemanich, P.K. Baumann, M.C. Benjamin, O.H. Nam, A.T. Sowers, B.L. Ward, H. Ade, and R.F. Davis: Electron emission properties of crystalline diamond and Ill-nitride surfaces. Appl. Surf. Sci. 130-132, 694–703 (1998).

    Article  Google Scholar 

  4. M.W. Geis, N.N. Efremow, K.E. Krohn, J.C. Twichell, T.M. Lyszczarz, R. Kalish, J.A. Greer, and M.D. Tabat: A new surface electron-emission mechanism in diamond cathodes. Nature 393, 431 (1998).

    Article  CAS  Google Scholar 

  5. H. Sein, W. Ahmed, M. Jackson, N. Ali, and J. Gracio: Stress distribution in diamond films grown on cemented WC-Co dental burs using modified hot-filament CVD. Surf. Eng. Technol. 163-164, 196–202 (2003).

    CAS  Google Scholar 

  6. E. Salgueiredo, F.A. Almeida, M. Amaral, A. J.S. Fernandes, F.M. Costa, R.F. Silva, and F.J. Oliveira: CVD micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. Diamond Relat. Mater. 18, 264–270 (2009).

    Article  CAS  Google Scholar 

  7. J. Zhang, J.W. Zimmer, R.T. Howe, and R. Maboudian: Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diamond Relat. Mater. 17, 23–28 (2008).

    Article  CAS  Google Scholar 

  8. S. Porro, G.D. Temmerman, S. Lisgo, P. John, L. Villalpando, J.W. Zimmer, B. Johnson, and J.I.B. Wilson: Nanocrystalline diamond coating of fusion plasma facing components. Diamond Relat. Mater. 18, 740–744 (2009).

    Article  CAS  Google Scholar 

  9. R. Haubner and B. Lux: Deposition of ballas diamond and nanocrystalline diamond. Int. J. Refract. Met. Hard Mater. 20, 93–100 (2002).

    Article  CAS  Google Scholar 

  10. A. Köpf, R. Haubner, and B. Lux: Multilayer coatings containing diamond and other hard materials on hardmetal substrates. Int. J. Refract. Met. Hard Mater. 20, 107–113 (2002).

    Article  Google Scholar 

  11. R. Haubner and W. Kalss: Diamond deposition on hard metal substrates - comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 28, 475–483 (2010).

    Article  CAS  Google Scholar 

  12. D. Das and R.N. Singh: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52, 29–64 (2007).

    Article  CAS  Google Scholar 

  13. S.T. Lee, Z. Lin, and X. Jiang: CVD diamond films: Nucleation and growth. Mater. Sci. Eng., R 25, 123–154 (1999).

    Article  Google Scholar 

  14. A. Gicquel, K. Hassouni, F. Silva, and J. Achard: CVD diamond films: From growth to applications. Curr. Appl. Phys. 1, 479–496 (2001).

    Article  Google Scholar 

  15. H. Liu and D.S. Dandy: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond Relat. Mater. 4, 1173–1188 (1995).

    Article  CAS  Google Scholar 

  16. L. Schafer, M. Höfer, and R. Kroger: The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films 515, 1017–1024 (2006).

    Article  CAS  Google Scholar 

  17. S. Takeuchi, S. Oda, and M. Murakawa: Synthesis of multilayer diamond film and evaluation of its mechanical properties. Thin Solid Films 398-399, 238–243 (2001).

    Article  Google Scholar 

  18. M. Ali and L.A. Qazi: Effect of substrate temperature on hot filament chemical vapor deposition grown diamond films. Int. J. Surf. Sci. Eng. 6(3), 214–230 (2012).

    Article  CAS  Google Scholar 

  19. M. Frenklach and H. Wang: Detailed surface and gas-phase chemical kinetics of diamond deposition. Phys. Rev. B 43, 1520–1545 (1991).

    Article  CAS  Google Scholar 

  20. S. Skokov, B. Weiner, and M. Frenklach: Elementary reaction mechanism for growth of diamond (100) surfaces from methyl radicals. J. Phys. Chem. A 98, 7073–7082 (1994).

    Article  CAS  Google Scholar 

  21. M. Ali and M. Ürgen: Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl. Surf. Sci. 257, 8420–8426 (2011).

    Article  CAS  Google Scholar 

  22. R.E. Clausing, L. Heatherly, E.D. Specht, K.L. More, and G.M. Begun: Growth mechanism, film morphology, texture and stresses for three types of HFCVD diamond film growth. Carbon 28(6), 762–763 (1990).

    Article  Google Scholar 

  23. Q. Chen, J. Yang, and Z. Lin: Synthesis of oriented textured diamond films on silicon via hot filament chemical vapor deposition. Appl. Phys. Lett. 67, 1853–1855 (1995).

    Article  CAS  Google Scholar 

  24. X. Zhang, T. Shi, J. Wang, and X. Zhang: Oriented growth of a diamond film on Si(100) by hot filament chemical vapor deposition. J. Cryst. Growth 155, 66–69 (1995).

    Article  CAS  Google Scholar 

  25. Z. Yu and A. Flodström: Pressure dependence of growth mode of HFCVD diamond. Diamond Relat. Mater. 6, 81–84 (1997).

    Article  CAS  Google Scholar 

  26. J.T. Huang, W.Y. Yeh, J. Hwang, and H. Chang: Bias enhanced nucleation and bias textured growth of diamond on silicon (100) in hot filament chemical vapor deposition. Thin Solid Films 315, 35–39 (1998).

    Article  CAS  Google Scholar 

  27. M.A. Taher, W.F. Schmidt, H.A. Naseem, W.D. Brown, A.P. Malshe, and S. Nasrazadani: Effect of methane concentration on physical properties of diamond-coated cemented carbide tool inserts obtained by hot-filament chemical vapour deposition. J. Mater. Sci. 33, 173–182 (1998).

    Article  CAS  Google Scholar 

  28. N. Shang, R. Fang, Y. Liao, and J. Cui: Deposition of (100) and (110) textured diamond films on aluminum nitride ceramics via hot filament chemical vapor deposition. Jpn. J. Appl. Phys. 38, 1500–1502 (1999).

    Article  CAS  Google Scholar 

  29. C-H. Li, Y. Liao, C. Chang, G.Z. Wang, and R.C. Fang: The nucleation and growth of (100)-textured diamond films in presence of nitrogen. Acta Phys. Sin. 49(9), 1756–1763 (2000).

    CAS  Google Scholar 

  30. M. Zhang, B. Gu, L. Wang, and Y. Xia: X-ray detectors based on (100)-textured CVD diamond films. Phys. Lett. A 332, 320–325 (2004).

    Article  CAS  Google Scholar 

  31. M. Zhang, B. Gu, L. Wang, and Y. Xia: Preparation and characterization of (100)-textured diamond films obtained by hot filament CVD. Vacuum 79, 84–89 (2005).

    Article  CAS  Google Scholar 

  32. Y. Ma, L.J. Wang, J.M. Liu, Q.F. Su, R. Xu, H.Y. Peng, W.M. Shi, and Y.B. Xia: Characterization of (100)-orientated diamond film grown by HFCVD method with a positive DC bias voltage. Trans. Nonferrous Met. Soc. China 16, S313–S316 (2006).

    Article  Google Scholar 

  33. Y. Liao, C. Chang, C.H. Li, Z.Y. Ye, G.Z. Wang, and R.C. Fang: Two-step growth of high quality diamond films. Thin Solid Films 368, 303–306 (2000).

    Article  CAS  Google Scholar 

  34. X. Li, Y. Hayashi, and S. Nishino: An improved method for large-area oriented nucleation of diamond during bias process via hot-filament chemical vapor deposition. Thin Solid Films 308-309, 163–167 (1997).

    Article  Google Scholar 

  35. C. Wild, R. Kohl, N. Herres, W. Miiller-Sebert, and P. Koidl: Oriented CVD diamond films: Twin formation, structure and morphology. Diamond Relat. Mater. 3, 373–381 (1994).

    Article  CAS  Google Scholar 

  36. B. Heimann, V. Raiko, and V. Buck: Search for scaling parameters for growth rate and purity of hot-filament CVD diamond. Int. J. Refract. Met. Hard Mater. 19, 169–175 (2001).

    Article  CAS  Google Scholar 

  37. W.A. Yarbrough, K. Tankala, M. Mecray, and T. DebRoy: Hydrogen assisted heat transfer during diamond growth using carbon and tantalum filaments. Appt. Phys. Lett. 60, 2068–2070 (1992).

    Article  CAS  Google Scholar 

  38. A. Cheesman, J.N. Harvey, and M.N.R. Ashfold: Studies of carbon incorporation on the diamond 100 surface during chemical vapor deposition using density functional theory. J. Phys. Chem. A 112, 11436–11448 (2008).

    Article  CAS  Google Scholar 

  39. J. Singh: Nucleation and growth mechanism of diamond during hot-filament chemical vapor deposition. J. Mater. Sci. 29, 2761–2766 (1994).

    Article  CAS  Google Scholar 

  40. Y.M. LeGrice, R.J. Nemanich, J.T. Glass, Y.H. Lee, R.A. Rudder, and R.J. Markunas: Domain size determination in diamond thin films, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by J.T. Glass, R. Messier, and N. Fujimori (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990) pp. 219–224.

    Google Scholar 

  41. C.T. Kuo, C.R. Lin, and M.L. Lien: Origins of the residual stress in CVD diamond films. Thin Solid Films 290-291, 254–259 (1996).

    Article  CAS  Google Scholar 

  42. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, and J.L. Peng: The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332, 93–97 (2000).

    Article  CAS  Google Scholar 

  43. A. Chattopadhyay, S.K. Sarangi, and A.K. Chattopadhyay: Effect of negative dc substrate bias on morphology and adhesion of diamond coating synthesized on carbide turning tools by modified HFCVD method. Appl. Surf. Sci. 255, 1661–1671 (2008).

    Article  CAS  Google Scholar 

  44. M. Amaral, F. Almeida, A.J.S. Fernandes, F.M. Costa, F.J. Oliveira, and R.F. Silva: The role of surface activation prior to seeding on CVD diamond adhesion. Surf. Coat. Technol. 204, 3585–3591 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by TÜBlTAK under 2216-Postdoctoral Fellowship Programme (Ref: B.02.1. TBT.0.06.01-216.01-677-6045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubarak Ali.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Ürgen, M. Growth of in situ multilayer diamond films by varying substrate-filament distance in hot-filament chemical vapor deposition. Journal of Materials Research 27, 3123–3129 (2012). https://doi.org/10.1557/jmr.2012.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.378

Navigation