Skip to main content
Log in

Microstructure and compression behavior of chip consolidated magnesium

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Chips produced by turning a commercial purity magnesium billet were cold compacted and then hot extruded at four different temperatures: 250, 300, 350, and 400 °C. Cast billets, of identical composition, were also extruded as reference material. Chip boundaries, visible even after 49:1 extrusion at 400 °C, were observed to suppress grain coarsening. Although 250 °C extruded chip-consolidated product showed early onset of yielding and lower ductility, fully dense material (extruded at 400 °C) had nearly 40% reduction in grain size with 22% higher yield strength and comparable ductility as that of the reference. The study highlights the role of densification and grain refinement on the compression behavior of chip consolidated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
TABLE I.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.

Similar content being viewed by others

REFERENCES

  1. C. Sharma and T. Nakagawa: Recent development in the recycling of machining swarfs by sintering and powder forging. Ann. CIPR. 25, 121 (1977).

    Google Scholar 

  2. M. Mabuchi, K. Kubota, and K. Higashi: Superplasticity in an AZ91 alloy extrusion processed from machined chips. J. Mater. Sci. Lett. 12, 1831 (1993).

    Article  CAS  Google Scholar 

  3. M. Mabuchi, K. Kubota, and K. Higashi: New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Mater. Trans. JIM. 36, 1249 (1995).

    Article  CAS  Google Scholar 

  4. M. Nakanishi, M. Mabuchi, N. Saito, M. Nakamura, and K. Higashi: Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip. J. Mater. Sci. Lett. 17, 2003 (1998).

    Article  CAS  Google Scholar 

  5. M. Samuel: A new technique for recycling aluminium scrap. J. Mater. Process. Technol. 135, 117 (2003).

    Article  CAS  Google Scholar 

  6. J. Gronostajski, H. Marciniak, and A. Matuszak: New methods of aluminium and aluminium-alloy chips recycling. J. Mater. Process. Technol. 106, 34 (2000).

    Article  Google Scholar 

  7. Z. Sherafat, M.H. Paydar, and R. Ebrahimi: Fabrication of Al7075/Al, two phase material, by recycling Al7075 alloy chips using powder metallurgy route. J. Alloy. Comp. 487, 395 (2009).

    Article  CAS  Google Scholar 

  8. Y. Chino, M. Mabuchi, S. Otsuka, K. Shimojima, H. Hosokawa, Y. Yamada, C. Wen, and H. Iwasaki: Corrosion and mechanical properties of recycled 5083 aluminum alloy by solid state recycling. Mater. Trans. 44, 1284 (2003).

    Article  CAS  Google Scholar 

  9. Y. Chino, H. Iwasaki, and M. Mabuchi: Solid-state recycling for machined chips of iron by hot extrusion and annealing. J. Mater. Res. 19, 1524 (2004).

    Article  CAS  Google Scholar 

  10. P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M.S. Dargusch, and K. Xia: Recycling of titanium machining chips by severe plastic deformation consolidation. J. Mater. Sci. 45, 4606 (2010).

    Article  CAS  Google Scholar 

  11. Y. Chino, M. Kobata, K. Shimojima, H. Hosokawa, Y. Yamada, H. Iwasaki, and M. Mabuchi: Blow forming of Mg alloy recycled by solid-state recycling. Mater. Trans. 45, 361 (2004).

    Article  CAS  Google Scholar 

  12. M. Nakanishi, M. Mabchi, K. Kubota, and K. Higashi: Relationship between extrusion ratio and mechanical properties of extruded machined-chips of AZ 91 Mg alloy. J. Jpn. Soc. Powder and Powder Metall. 42, 373 (1995).

    Article  CAS  Google Scholar 

  13. H. Watanabe, K. Moriwaki, T. Mukai, K. Ishikawa, M. Kohzu, and K. Higashi: Consolidation of machined magnesium alloy chips by hot extrusion utilizing superplastic flow. J. Mater. Sci. 36, 5007 (2001).

    Article  CAS  Google Scholar 

  14. Y. Chino, T. Hoshika, and J-S. Lee: Mechanical properties of AZ31 Mg alloy recycled by severe deformation. J. Mater. Res. 21, 754 (2006).

    Article  CAS  Google Scholar 

  15. Y. Chino and M. Mabuchi: Deformation characteristics of recycled AZ91 Mg alloy containing oxide contaminants. Mater. Trans. 49, 1093 (2008).

    Article  CAS  Google Scholar 

  16. Y. Tao, Z. Ming-yi, H. Xiao-shi, and W. Kun: Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP. Trans. Nonferrous Met. Soc. China 20, s604 (2010).

    Article  Google Scholar 

  17. T. Peng, Q.D. Wang, Y.K. Han, J. Zheng, and W. Guo: Consolidation behavior of Mg–10Gd–2Y–0.5Zr chips during solid-state recycling. J. Alloys Compd. 503, 253 (2010).

    Article  CAS  Google Scholar 

  18. P. Pérez, G. Garcés, and P. Adeva: Influence of texture on the mechanical properties of commercially pure magnesium prepared by powder metallurgy. J. Mater. Sci. 42, 3969 (2007).

    Article  Google Scholar 

  19. S. Mueller, K. Mueller, and W. Reimers: Modifications of the extrusion process of magnesium alloys for improved mechanical properties. Key Eng. Mater. 367, 9 (2009).

    Article  Google Scholar 

  20. J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, and K.U. Kainer: Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr. Mater. 53, 259 (2005).

    Article  CAS  Google Scholar 

  21. S.I. Wright, J. Bingert, T.A. Masaon, and R.J. Larsen: Advanced characterization of twins using automated electron backscatter diffraction. Mater. Sci. Forum. 408, 511 (2002).

    Article  Google Scholar 

  22. S. Mishra, K. Narasimhan, and I. Samajdar: Deformation twinning in AISI 316L austenitic stainless steel: Role of strain and strain path. Mater. Sci. Technol. 23, 1118 (2007).

    Article  CAS  Google Scholar 

  23. S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, P. Pant, G.K. Dey, D. Srivastav, R. Tewari, and S. Banerjee: Deformation twinning in zircaloy2. Mater. Sci. Technol. 26, 104 (2010).

    Article  CAS  Google Scholar 

  24. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  25. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  26. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055 (2003).

    Article  CAS  Google Scholar 

  27. J.F. Dorris: Classification of failure modes for unconfined compression tests of multi-year ridge ice. Technical information record, BRC-1285, Project No. 27802.34, Shell Development Company, Texas, USA (1985).

    Google Scholar 

  28. X.X. Wei and K.T. Chau: Finite and transversely isotropic elastic cylinders under compression with end constraint induced by friction. Int. J. Solids Struct. 46, 1953 (2009).

    Article  Google Scholar 

  29. J.B. Rao, S. Kamaluddin, and N.R.M.R. Bhargava: Optical strain measurements and its finite element analysis of cold workability limits of pure aluminium. Int. J. Eng. Sci. Technol. 2, 1 (2010).

    CAS  Google Scholar 

  30. F.K. Chen and C.J. Chen: On the non-uniform deformation of the cylinder compression test. J. Eng. Mater. Technol. 122, 192 (2000).

    Article  CAS  Google Scholar 

  31. S. Biswas, S.S. Dhinwal, and S. Suwas: Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater. 58, 3247 (2010).

    Article  CAS  Google Scholar 

  32. P. Andersson, C.H. Cáceres, and J. Koike: Hall-Petch parameters for tension and compression in cast Mg. Mater. Sci. Forum. 419, 123 (2003).

    Article  Google Scholar 

  33. G. Mann, J.R. Griffiths, and C.H. Cáceres: Hall-Petch parameters in tension and compression in cast Mg-2Zn alloys. J. Alloys Compd. 378, 188 (2004).

    Article  CAS  Google Scholar 

  34. D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao: On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy. J. Alloys. Compd. 478, 789 (2009).

    Article  CAS  Google Scholar 

  35. Y.N. Wang and J.C. Huang: Texture analysis in hexagonal materials. Mater. Chem. Phys. 81, 11 (2003).

    Article  CAS  Google Scholar 

  36. M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta: Enhancement of compressive strength and failure strain in AZ31 magnesium alloy. J. Alloys. Compd. 482, 73 (2009).

    Article  CAS  Google Scholar 

  37. M.R. Barnett, Z. Keshavraz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 52, 5093 (2004).

    Article  CAS  Google Scholar 

  38. M.R. Barnett: Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng., A 464, 1 (2007).

    Article  Google Scholar 

  39. Y. Chino, T. Furuta, M. Hakamada, and M. Mabuchi: Influence of distribution of oxide contaminants on fatigue behavior in AZ31 Mg alloy recycled by solid-state processing. Mater. Sci. Eng. 424, 355 (2006).

    Article  Google Scholar 

  40. K. Matsuura, Y. Watanabe, and Y. Hirashima: Use of recycled steel machining chips and aluminium can shreds for synthesizing iron aluminide intermetallic alloys. ISIJ Int. 44, 1258 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work involved the Institute X-ray Facility and Institute Nanoscience Initiative (INI) facility sponsored by Department of Science and Technology under the Funds for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (DST-FIST program) at Indian Institute of Science (IISc), Bangalore. The authors would also like to acknowledge the use of the National Facility for Texture & OIM (a DST- IRPHA (Intensification of Research in High Priority Areas) facility) at Indian Institute of Technology-Bombay for this study. Adamane R. Anilchandra, would like to thank Mr. Somjeeth Biswas of IISc for the useful discussion during the course of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adamane R. Anilchandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anilchandra, A.R., Basu, R., Samajdar, I. et al. Microstructure and compression behavior of chip consolidated magnesium. Journal of Materials Research 27, 709–719 (2012). https://doi.org/10.1557/jmr.2011.411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.411

Navigation