Skip to main content
Log in

Pulsed plasmas study of linear antennas microwave CVD system for nanocrystalline diamond film growth

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Optical emission spectroscopy (OES) was used to study plasmas generated by a novel plasma-enhanced linear antennas microwave chemical vapor deposition system for nanocrystalline diamond (NCD) growth in gas mixtures of H2 + CH4 + CO2. Atomic hydrogen intensities were investigated for pulsed plasmas and continuous wave (CW) mode plasmas. OES was used to study the effect of pressure (0.38–2 mbar), microwave pulse frequency (3.8–25 kHz), and total gas flow (125–1000 sccm). By using the Boltzmann plot for atomic hydrogen line intensities, plasma electron temperatures for pulsed and CW plasmas were calculated. During experiments, NCD films were deposited, which were investigated by secondary electron microscopy and Raman spectroscopy in terms of surface crystalline morphology and nondiamond carbon content. NCD films produced in high pulse frequency plasmas show low sp2 content (less than 5%) and homogenous crystalline structure with only a small amount of crystalline defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. K. Tsugawa, M. Ishihara, J. Kim, M. Hasegawa, and Y. Koga: Large-area and low-temperature nanodiamond coating by microwave plasma chemical vapor deposition. New Diamond Front. Carbon Technol. 16(6), 337 (2006).

    CAS  Google Scholar 

  2. J.E. Butler and A.V. Sumant: The CVD of nanodiamond materials. Chem. Vap. Deposition 14, 145 (2008).

    Article  CAS  Google Scholar 

  3. M. Füner, C. Wild, and P. Koidl: Simulation and development of optimized microwave plasma reactors for diamond deposition. Surf. Coat. Technol. 116, 853 (1999).

    Article  Google Scholar 

  4. E. Pleuler, C. Wild, M. Füner, and P. Koidl: The CAP-reactor, a novel microwave CVD system for diamond deposition. Diamond Relat. Mater. 11, 467 (2002).

    Article  CAS  Google Scholar 

  5. F. Fendrych, A. Taylor, L. Peksa, I. Kratochvílová, J. Vlček, V. Řezáčová, V. Petrák, Z. Kluiber, L. Fekete, M. Liehr, and M. Nesládek: Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas microwave CVD system. J. Phys. D: Appl. Phys. 43(37), 374018 (2010).

    Article  Google Scholar 

  6. A. Taylor, F. Fendrych, L. Fekete, J. Vlček, V. Řezáčová, V. Petrák, J. Krucký, M. Nesládek, and M. Liehr: Novel high frequency pulsed MW-linear antenna plasma-chemistry: Routes towards large area, low pressure nanodiamond growth. Diamond Relat. Mater. 20(4), 613 (2011).

    Article  CAS  Google Scholar 

  7. M.A. Elliott, P.W. May, J. Petherbridge, S.M. Leeds, M.N.R. Ashfold, and W.N. Wang: Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas. Diamond Relat. Mater. 9(3–6), 311 (2000).

    Article  CAS  Google Scholar 

  8. T. Vandevelde, T.D. Wu, C. Quaeyhaegens, J. Vlekken, M. D’Olieslaeger, and L. Stals: Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films 340(1–2), 159 (1999).

    Article  CAS  Google Scholar 

  9. M.M. Larijani, F. Le Normand, and O. Cregut: An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond. Appl. Surf. Sci. 253(8), 4051 (2007).

    Article  CAS  Google Scholar 

  10. F. Bénédic, X. Duten, O. Syll, G. Lombardi, K. Hassouni, and A. Gicquel: Spectroscopic diagnostics of pulsed microwave plasmas used for nanocrystalline diamond growth. Chem. Vap. Deposition 14, 173 (2008).

    Article  Google Scholar 

  11. J. Vlček, F. Fendrych, A. Taylor, I. Kratochvílová, L. Fekete, M. Nesládek, and M. Liehr: Novel concepts for low-pressure, low-temperature nanodiamond growth using MW linear antenna plasma sources, in Diamond Electronics and Bioelectronics-Fundamentals to Applications III, edited by P. Bergonzo, J.E. Butler, R.B. Jackman, K.P. Loh, and M. Nesladek (Mater. Res. Soc. Symp. Proc. 1203, Warrendale, PA, 2010) 1203-J05-05.

  12. A. Gicquel, K. Hassouni, F. Silva, and J. Achard: Modeling and diagnostics of microwave discharges (H2/CH4 and H2/CH4/B2H6) used for diamond and boron-doped diamond deposition. Curr. Appl. Phys. 1(6), 479 (2001).

    Article  Google Scholar 

  13. S. Prawer and R.J. Nemanich: Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. London, Ser. A 362, 2537 (2004).

    Article  CAS  Google Scholar 

  14. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).

    Article  CAS  Google Scholar 

  15. W. Fortunato, A.J. Chiquito, J.C. Galzerani, and J.R. Moro: Crystalline quality and phase purity of CVD diamond films studied by Raman spectroscopy. J. Mater. Sci. 42(17), 7331 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Academy of Sciences of the Czech Republic (Grants KAN200100801, KAN400480701, KAN300100801, and KAN301370701) and the European R&D projects FP7 ITN Grant No. 238201 (MATCON) and the COST MP0901-NanoTP (MSMT CR Reg. No. LD11076) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Fendrych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlcek, J., Fendrych, F., Taylor, A. et al. Pulsed plasmas study of linear antennas microwave CVD system for nanocrystalline diamond film growth. Journal of Materials Research 27, 863–867 (2012). https://doi.org/10.1557/jmr.2011.381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.381

Navigation