Skip to main content
Log in

Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein rutile (TiO2) single-crystal surfaces, with (001) and (100) orientations, were indented with hemispherical indenters with radii of 13.5, 5, and 1.4 μm. By converting the load–displacement data to nanoindentation (NI) stress–strain curves, together with microscopic post-indentation observations, we conclude that in the (001) orientation, plastic deformation occurs by the activation of all four {101}<10\(\bar 1\)> slip systems. In the (100) orientation, only two of the four {101}<10\(\bar 1\) > slip systems, along with {100}<0\(\bar 1\)0> slip, are activated. Because the four {101}<10\(\bar 1\)> slip systems in the (001) orientation intersect, the surface is harder and exhibits higher hardening rates after the nucleation of dislocations. The latter are manifested by pop-ins, some of which are large. The pop-in stresses are adequately described by Weibull statistics and were significantly higher for the (001) orientation. The elastic moduli, determined from spherical NI stiffness versus contact radii plots, were 349 ± 5 and 229 ± 4 GPa for (001) and (100) orientations, respectively. Fully spontaneous reversible, stress–strain hysteretic curves—only manifest in the (100) orientation—are attributed to the to-and-fro motion of dislocations comprising incipient kink bands in the {100}<0\(\bar 1\)0> slip system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. U. Diebold: Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A Mater. Sci. Process. 76, 681 (2003).

    Article  CAS  Google Scholar 

  2. N-G. Park, J.d. Lagemaat, and A.J. Frank: Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989 (2000).

    Article  CAS  Google Scholar 

  3. S. Matsuura: New developments and applications of gas sensors in Japan. Sens. Actuators, B 13, 7 (1993).

    Article  CAS  Google Scholar 

  4. K. Okimura, N. Maeda, and A. Shibata: Characteristics of rutile TiO2 films prepared by r.f. magnetron sputtering at a low temperature. Thin Solid Films 281, 427 (1996).

    Article  Google Scholar 

  5. B. Feng, J.Y. Chen, S.K. Qi, L. He, J.Z. Zhao, and X.D. Zhang: Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci.- Mater. Med. 13, 457 (2002).

    Article  CAS  Google Scholar 

  6. M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, and T. Nabatame: Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424, 224 (2003).

    Article  CAS  Google Scholar 

  7. W.M. Hirthe and J.O. Brittain: Dislocations in rutile as revealed by the etch-pit technique. J. Am. Ceram. Soc. 45, 546 (1962).

    Article  CAS  Google Scholar 

  8. K.H.G. Ashbee and R.E. Smallman: The plastic deformation of titanium dioxide single crystals. Proc. R. Soc. London, Ser.A 274, 195 (1963).

    Article  CAS  Google Scholar 

  9. M.G. Blanchin, L.A. Bursill, and C. Lafage: Deformation and microstructure of rutile. Proc. R. Soc. London, Ser. A 429, 175 (1990).

    Article  CAS  Google Scholar 

  10. H. Li and R.C. Bradt: Knoop microhardness anisotropy of single crystal rutile. J. Am. Ceram. Soc. 73, 1360 (1990).

    Article  CAS  Google Scholar 

  11. H. Li and R.C. Bradt: The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28, 917 (1993).

    Article  CAS  Google Scholar 

  12. S. Basu and M.W. Barsoum: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress-strain curves. J. Mater. Res. 22, 2470 (2007).

    Article  CAS  Google Scholar 

  13. M.J. Mayo, R.W. Siegel, A. Narayanasamy, and W.D. Nix: Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 5, 1073 (1990).

    Article  CAS  Google Scholar 

  14. K. Kurosaki, D. Setoyama, J. Matsunaga, and S. Yamanaka: Nanoindentation tests for TiO2, MgO, and YSZ single crystals. J. Alloy. Comp. 386, 261 (2005).

    Article  CAS  Google Scholar 

  15. A.O. Olofinjana, J.M. Bell, and A.K. Jamting: Evaluation of the mechanical properties of sol-gel-deposited titania films using ultra-micro-indentation method. Wear 241, 174 (2000).

    Article  CAS  Google Scholar 

  16. S. Basu, A. Moseson, and M.W. Barsoum: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).

    Article  CAS  Google Scholar 

  17. A.J. Moseson, S. Basu, and M.W. Barsoum: Determination of the effective zero point of contact for spherical nanoindentation. J. Mater. Res. 23, 204 (2008).

    Article  CAS  Google Scholar 

  18. S. Basu, M.W. Barsoum, and S.R. Kalidindi: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 (2006).

    Article  CAS  Google Scholar 

  19. S. Basu, A. Zhou, and M.W. Barsoum: Reversible dislocation motion under contact loading in LiNbO3 single crystal. J. Mater. Res. 23, 1334 (2008).

    Article  CAS  Google Scholar 

  20. S. Basu, A. Zhou, and M.W. Barsoum: On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J. Struct. Geol. 31, 791 (2009).

    Article  Google Scholar 

  21. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508 (2004).

    Article  CAS  Google Scholar 

  22. R. Buchs, S. Basu, O. Elshrief, R. Coward, and M.W. Barsoum: Spherical nanoindentation and vickers microhardness study of the deformation of poled BaTiO3 single crystals. J. Appl. Phys. 105, 093540 (2009).

    Article  CAS  Google Scholar 

  23. S. Basu, M.W. Barsoum, A.D. Williams, and T.D. Moustakas: Spherical nanoindentation and deformation mechanisms in free-standing GaN films. J. Appl. Phys. 101, 083522 (2007).

    Article  CAS  Google Scholar 

  24. I.N. Sneddon: The relaxation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  25. M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, and A. Murugahiah: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 (2003).

    Article  CAS  Google Scholar 

  26. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 (2004).

    Article  CAS  Google Scholar 

  27. M.W. Barsoum, T. Zhen, A. Zhou, S. Basu, and S.R. Kalidindi: Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 71, 134101 (2005).

    Article  CAS  Google Scholar 

  28. A. Zhou, S. Basu, and M.W. Barsoum: Kinking nonlinear elasticity, damping, micro- and macroyielding of hexagonal close-packed metals. Acta Mater. 56, 60 (2008).

    Article  CAS  Google Scholar 

  29. M.W. Barsoum and S. Basu: Kinking nonlinear elastic solids, in Encyclopedia of Materials: Science and Technology, edited by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssiere (Elsevier, Oxford, 2010).

    Google Scholar 

  30. A. Murugaiah, M.W. Barsoum, S.R. Kalidindi, and T. Zhen: Spherical nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).

    Article  CAS  Google Scholar 

  31. A.G. Zhou, M.W. Barsoum, S. Basu, S.R. Kalidindi, and T. El-Raghy: Incipient and regular kink bands in dense and porous Ti2AlC. Acta Mater. 54, 1631 (2006).

    Article  CAS  Google Scholar 

  32. F.C. Frank and A.N. Stroh: On the theory of kinking. Proc. Phys. Soc. 65, 811 (1952).

    Article  Google Scholar 

  33. H. Hertz: Miscellaneous Papers by H. Hertz (Macmillan, London, 1896).

    Google Scholar 

  34. J.B. Wachtman, W.E. Tefft, and D.G. Lam: Elastic constants of rutile (TiO2). J. Res. Nat. Bur. Stand. 66A, 465 (1962).

    Article  CAS  Google Scholar 

  35. E. Chang and E.K. Graham: The elastic constants of cassiterite SnO2 and their pressure and temperature dependence. J. Geophys. Res. 80, 2595 (1975).

    Article  CAS  Google Scholar 

  36. D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, and E. Hake: Elasticity of TiO2 rutile to 1800 K. Phys. Chem. Miner. 26, 31 (1998).

    Article  CAS  Google Scholar 

  37. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  CAS  Google Scholar 

  38. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  39. J.R. Morris, H. Bei, G.M. Pharr, and E.P. George: Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106, 165502 (2011).

    Article  CAS  Google Scholar 

  40. K.H.G. Ashbee and R.E. Smallman: Stress-strain behavior of titanium dioxide (rutile) single crystals. J. Am. Ceram. Soc. 46, 211 (1963).

    Article  CAS  Google Scholar 

  41. A.G. Zhou and M.W. Barsoum: Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5). J. Alloy. Comp. 498, 62 (2010).

    Article  CAS  Google Scholar 

  42. B. Anasori: Spherical nanoindentation study of the deformation micromechanisms of LiTaO3 single crystals. J. Appl. Phys. 110, 023516 (2011).

    Article  CAS  Google Scholar 

  43. X.G. Ma, P. Liang, L. Miao, S.W. Bie, C.K. Zhang, L. Xu, and J.J. Jiang: Pressure-induced phase transition and elastic properties of TiO2 polymorphs. Phys. Status Solidi B 246, 2132 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Elshrief, O.A., Coward, R. et al. Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation. Journal of Materials Research 27, 53–63 (2012). https://doi.org/10.1557/jmr.2011.337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.337

Navigation