Skip to main content
Log in

Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A family of ultrahigh strength Co-based bulk metallic glasses (BMGs) with critical diameters up to 2 mm is synthesized in Co65–xTaxB35 (at.%, x = 5–10) alloys by copper mold casting. The improved glass-forming ability associated with near eutectic compositions is attributed to the appropriate addition of Ta. The glassy alloys exhibit high glass transition temperature of 930–975 K, ultrahigh compressive strength of 5.6–6.0 GPa, high specific strength of 639–654 N·m/g, Vickers hardness of 15–16 GPa, and distinct plastic strain of 0.5–1.5%. The strength and the specific strength are the highest values reported for bulk metallic materials known so far. Several universal criteria correlated with the thermal properties, elastic constants, and mechanical properties were validated in the Co-based BMG system. These Co–Ta–B BMGs combining with superior mechanical properties, high thermal stability, and simple elemental composition are significant for scientific research as modeling materials and industrial application as advanced structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE II.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  3. M.F. Ashby and A.L. Greer: Metallic glasses as structure materials. Scr. Mater. 54, 321 (2006).

    CAS  Google Scholar 

  4. W.L. Johnson: Bulk amorphous metal: An emerging engineering material. JOM 54, 40 (2002).

    Article  CAS  Google Scholar 

  5. A. Ionue, B.L. Shen, and C.T. Chang: Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa. Intermetallics 14, 936 (2006).

    Article  Google Scholar 

  6. J.J. Lewandowski and P. Lowhaphandu: Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos. Mag. A 82, 3427 (2002).

    Article  CAS  Google Scholar 

  7. W.H. Wang: Elastic moduli and behaviors of metallic glasses. J. Non-Cryst. Solids 351, 1481 (2005).

    Article  CAS  Google Scholar 

  8. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  9. W.H. Wang: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).

    Article  Google Scholar 

  10. Y. Zhang and A.L. Greer: Correlations for predicting plasticity or brittleness of metallic glasses. J. Alloy. Comp. 434–, 2 (2007).

    Article  Google Scholar 

  11. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    Article  CAS  Google Scholar 

  12. X.J. Gu, S.J. Poon, G.J. Shiflet, and M. Widom: Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure. Acta Mater. 56, 88 (2008).

    Article  CAS  Google Scholar 

  13. A. Ionue, B.L. Shen, and C.T. Chang: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 85, 4093 (2004).

    Article  Google Scholar 

  14. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 (2003).

    Article  CAS  Google Scholar 

  15. A. Inoue: Slowly-cooled bulk amorphous alloys. Mater. Sci. Forum 179–, 691 (1995).

    Article  Google Scholar 

  16. A. Inoue: Bulk amorphous alloys with soft and hard magnetic properties. Mater. Sci. Eng., A 226–, 691 (1997).

    Google Scholar 

  17. http://www.webelements.com.

  18. H.A. Davies and B.G. Lewis: Generalized kinetic approach to metallic glass formation. Scr. Metall. 9, 1107 (1975).

    Article  Google Scholar 

  19. M.H. Cohen and D. Turnbull: Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131 (1961).

    Article  CAS  Google Scholar 

  20. W. Klement, R.H. Willens, and P. Duwez: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).

    Article  CAS  Google Scholar 

  21. R.J. Highmore and A.L. Greer: Eutectics and the formation of amorphous alloys. Nature 339, 363 (1989).

    Article  CAS  Google Scholar 

  22. D. Turnbull: Under what conditions can a glass be formed?Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  23. A. Inoue, T. Zhang, and T. Masumoto: Glass-forming ability of alloys. J. Non-Cryst. Solids 156–, 473 (1993).

    Article  Google Scholar 

  24. Z.P. Lu and C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).

    Article  CAS  Google Scholar 

  25. S.V. Madge and A.L. Greer: Effect of Ag addition on the glass-forming ability and thermal stability of Mg-Cu-Y alloys. Mater. Sci. Eng., A 375–, 759 (2004).

    Article  Google Scholar 

  26. R. Li, S.J. Pang, C.L. Ma, and T. Zhang: Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Mater. 55, 3719 (2007).

    Article  CAS  Google Scholar 

  27. C.L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, and J. Xu: A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater. 54, 1403 (2006).

    Article  CAS  Google Scholar 

  28. H.X. Li, K.B. Kim, and S. Yi: Enhanced glass-forming ability of Fe-based bulk metallic glasses prepared using hot metal and commercial raw materials through the optimization of Mo content. Scr. Mater. 56, 1035 (2007).

    Article  CAS  Google Scholar 

  29. M.F. Ashby: Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Oxford, UK, 2005), p. 58.

    Google Scholar 

  30. M. Ohtsuki, R. Tamura, S. Takeuchi, S. Yoda, and T. Ohmura: Hard metallic glass of tungsten-based alloy. Appl. Phys. Lett. 84, 4911 (2004).

    Article  CAS  Google Scholar 

  31. A. Inoue, B.L. Shen, A.R. Yavari, and A.L. Greer: Mechanical properties of Fe-based bulk glassy alloys in Fe-Si-B-Nb and Fe-Ga-P-C-B-Si systems. J. Mater. Res. 18, 1487 (2003).

    Article  CAS  Google Scholar 

  32. M. Stoica, J. Eckert, S. Roth, Z.F. Zhang, L. Schultz, and W.H. Wang: Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 13, 764 (2005).

    Article  CAS  Google Scholar 

  33. Z.F. Zhang, H. Zhang, B.L. Shen, A. Inoue, and J. Eckert: Shear fracture and fragmentation mechanisms of bulk metallic glasses. Philos. Mag. Lett. 86, 643 (2006).

    Article  CAS  Google Scholar 

  34. J.T. Fan, Z.F. Zhang, S.X. Mao, B.L. Shen, and A. Inoue: Deformation and fracture behaviors of Co-based metallic glass land its composite with dendrites. Intermetallics 17, 445 (2009).

    Article  CAS  Google Scholar 

  35. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or britttleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  36. A. Ionue and A. Takeuchi: Recent progress in bulk glassy alloys. Mater. Trans. 43, 1892 (2002).

    Article  Google Scholar 

  37. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, and M.W. Chen: Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys. Rev. Lett. 103, 065504 (2009).

    Article  CAS  Google Scholar 

  38. J.C. Dyre, N.B. Olsen, and T. Chrisrensen: Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B 53, 2171 (1996).

    Article  CAS  Google Scholar 

  39. T. Egami, S.J. Poon, Z. Zhang, and V. Keppens: Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys. Rev. B 76, 024203 (2007).

    Article  Google Scholar 

  40. R. Li, M. Stoica, G. Wang, and J.M. Park: Glass formation, thermal properties, and elastic constants of La-Al-Co alloys. J. Mater. Res. 25, 1398 (2010).

    Article  CAS  Google Scholar 

  41. S.H. Whang, D.E. Polk, and B.C. Giessen: The correlation between the Young’s modules and microhardness in metallic glasses. Proceedings of the Fourth International Conference on Rapidly Quenched Metals, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Tokyo, 1982), pp. 1365–1368.

  42. D.H. Xu, G. Duan, W.L. Johnson, and C. Garland: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).

    Article  CAS  Google Scholar 

  43. X.J. Gu, A.G. McDermott, and S.J. Poon: Critical poisson’s ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Basic Research Program (973 Program) (Grant No. 2007CB613900), Natural Science Foundation of China (Grant No. 51071008), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, R., Hua, N. et al. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. Journal of Materials Research 26, 2072–2079 (2011). https://doi.org/10.1557/jmr.2011.187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.187

Navigation