Skip to main content
Log in

Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The reinforcing effects of carbon nanotubes (CNTs) are investigated for aluminum matrix composites. The composites present a strong bonding between CNTs and the aluminum matrix using a controlled mechanical milling process, producing a network structure of aluminum atoms around CNTs. At the same time, CNTs that are dispersed during the milling process can be located inside aluminum powders, thereby providing an easy consolidation route via thermomechanical processes. A composite containing 4.5 vol% multiwalled CNTs exhibits a yield strength of 620 MPa and fracture toughness of 61 MPa·mm1/2, the values of which are nearly 15 and seven times higher than those of the corresponding starting aluminum, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Noguchi, A. Magario, S. Fukazawa, J. Beppu, and M. Seki: Carbon nanotube/aluminium composites with uniform dispersion. Mater. Trans. 45, 602 (2004).

    Article  CAS  Google Scholar 

  2. H. Yanagi, Y. Kawai, T. Kita, S. Fujii, Y. Hayashi, A. Magario, and T. Noguchi: Carbon nanotube/aluminum composites as a novel field electron emitter. Jpn. J. Appl. Phys. 45, L650 (2006).

    Article  CAS  Google Scholar 

  3. R. Zhong, H. Cong, and P. Hou: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848 (2003).

    Article  CAS  Google Scholar 

  4. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlière, F. Chastel, and A. Rousset: Carbon nanotube–metal–oxide nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater. 48, 3803 (2000).

    Article  CAS  Google Scholar 

  5. R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni: Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53, 1159 (2005).

    Article  CAS  Google Scholar 

  6. M.K.E. Amal and A.E.B. Mostafa: Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486 (2007).

    Google Scholar 

  7. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong: Extraordinary strengthening effect of carbon nanotubes in metalmatrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377 (2005).

    Article  CAS  Google Scholar 

  8. X. Hu, T. Wang, X. Qu, and S. Dong: In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J. Phys. Chem. B 110, 853 (2006).

    Article  CAS  Google Scholar 

  9. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites Part A 40(5), 589 (2009).

    Article  Google Scholar 

  10. T. Tokunaga, K. Kaneko, and Z. Horita: Production of aluminummatrix carbon nanotube composite using high pressure torsion. Mater. Sci. Eng. A. 490, 300 (2008).

    Article  Google Scholar 

  11. R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, and R. Martínez-Sánchez: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A. 502, 159 (2009).

    Article  Google Scholar 

  12. Y. Zhou, W. Yang, Y. Xia, and P.K. Mallick: An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates. Mater. Sci. Eng. A. 361, 112 (2003).

    Article  Google Scholar 

  13. S. Berber and A. Oshiyama: Reconstruction of mono-vacancies in carbon nanotube: Atomic relaxation vs. spin polarization. Physica B 376–377, 272 (2006).

    Article  Google Scholar 

  14. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iljima: Direct evidence for atomic defects in grapheme layers. Nature 430, 870 (2004).

    Article  CAS  Google Scholar 

  15. S. Wang, R. Liang, B. Wang, and C. Zhang: Load-transfer in functionalized carbon nanotubes/polymer composites. Chem. Phys. Lett. 457, 371 (2008).

    Article  CAS  Google Scholar 

  16. T.H. Courtney: Mechanical Behavior of Materials (McGraw-Hill, New York, 2000).

    Google Scholar 

  17. R.W. Armstrong: The Yield, Flow and Fracture of Polycrystals (Barking, UK, 1983).

    Google Scholar 

  18. K.T. Faber and A.G. Evans: Crack deflection processes. Acta Metall. 31, 565 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyun Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Shin, J., Min, B. et al. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. Journal of Materials Research 24, 2610–2616 (2009). https://doi.org/10.1557/jmr.2009.0318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0318

Navigation