Skip to main content
Log in

Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ultrastructure of nanoscale apatite biomimetically formed on an organic template from a supersaturated mineralizing solution was studied to examine the morphological and crystalline arrangement of mineral apatites. Needle-shaped apatite crystal plates with a size distribution of ∼100 to ∼1000 nm and the long axis parallel to the c axis ([002]) were randomly distributed in the mineral films. Between these randomly distributed needle-shaped apatite crystals, amorphous phases and apatite crystals (∼20–40 nm) with the normal of the grains quasi-perpendicular to the c axis were observed. These observations suggest that the apatite film is an interwoven structure of amorphous phases and apatite crystals with various orientations. The mechanisms underlying the shape of the crystalline apatite plate and aggregated apatite nodules are discussed from an energy-barrier point of view. The plate or needle-shaped apatite is favored in single-crystalline form, whereas the granular nodules are favored in the polycrystalline apatite aggregate. The similarity in shape in both single-crystalline needle-shaped apatite and polycrystalline granular apatite over a wide range of sizes is explained by the principle of similitude, in which the growth and shape are determined by the forces acting upon the surface area and the volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.C. Bunker, P.C. Rieke, B.J. Tarasevich, A.A. Campbell, G.E. Fryxell, G.L. Graff, L. Song, J. Liu, J.W. Virden G.L. McVay: Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264, 48 1994

    Article  CAS  Google Scholar 

  2. M. Tanahashi, T. Kokubo, T. Nakamura, Y. Katsura M. Nagano: Ultrastructural study of an apatite layer formed by biomimetic process and its bonding to bone. Biomaterials 17, 47 1996

    Article  CAS  Google Scholar 

  3. Y.F. Chou, W.A. Chiou, Y. Xu, J.C.Y. Dunn B.M. Wu: The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials 25, 5323 2004

    Article  CAS  Google Scholar 

  4. D.V. Vasudev, J.L. Ricci, C. Sabatino, P. Li R. Parsons: In vivo evaluation of a biomimetic apatite coating grown on titanium surfaces. J. Biomed. Mater. Res. 69A, 629 2004

    Article  CAS  Google Scholar 

  5. W.L. Murphy, D.H. Kohn D.J. Mooney: Growth of continuous bone-like mineral within porous poly(lactic-co-glycolic acid) scaffolds in-vitro. J. Biomed. Mater. Res. 50, 50 2000

    Article  CAS  Google Scholar 

  6. D.H. Kohn, K. Shin, S.I. Hong, A.C. Jayasuriya, E.V. Leonova, R.A. Rossello P.H. Krebsbach: Self-assembled mineral scaffold as a model systems for biomineralization and tissue engineering in Proceedings of 8th International Conference on the Chemistry and Biology of Mineralized Tissue, edited by W.J. Landis and J. Sodek (University of Toronto Press Toronto, ON, Canada) 2005 216

  7. L. Müller F.A. Müller: Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater. 2, 181 2006

    Article  Google Scholar 

  8. X.B. Yang, D.W. Green, H.I. Roach, N.M. Clarke, H.C. Anderson, S.M. Howdle, K.M. Shakesheff R.O. Oreffo: Novel osteoinductive biomimetic scaffolds stimulate human osteoprogenitor activity-implications for skeletal repair. Connect. Tissue Res. 44(Suppl. 1), 312 2003

    Article  CAS  Google Scholar 

  9. L.L. Hench: Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487 1991

    Article  CAS  Google Scholar 

  10. E.D. Eanes: Dynamics of calcium phosphate precipitation in Calcification in Biological Systems, edited by E. Bonucci (CRC Press, Boca Raton, FL) 1992 1

  11. R.Z. LeGeros: Calcium Phosphates in Oral Biology and Medicine Karger Basel, Switzerland 1991 12

    Google Scholar 

  12. L. Janasova, F.A. Muller, A. Helebrant, J. Strnad P. Greil: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25, 1187 2004

    Article  Google Scholar 

  13. X. Lu Y. Leng: TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials 25, 1779 2004

    Article  CAS  Google Scholar 

  14. J.D. Layani, F.J.G. Guisinier, P. Steuer, H. Cohen, J.C. Voegel I. Mayer: High resolution electron microscopy study of synthetic carbonate and aluminum containing apatites. J. Biomed. Mater. Res. 50, 199 2000

    Article  CAS  Google Scholar 

  15. M. Aizawa, A.E. Porter, S.M. Best W. Bonfield: Ultrastructural observation of single crystal apatite fibers. Biomaterials 26, 3427 2005

    Article  CAS  Google Scholar 

  16. Y. Leng, J. Chen S. Qu: TEM study of calcium phosphate precipitation on HA/TCP ceramics. Biomaterials 24, 2125 2003

    Article  CAS  Google Scholar 

  17. L.N. Luong, S.I. Hong, R.J. Patel, M.E. Outslay D.H. Kohn: Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27, 1175 2006

    Article  CAS  Google Scholar 

  18. K.H. Lee S.I. Hong: Interfacial and twin boundary structures of nanostructured Cu-Ag filamentary composites. J. Mater. Res. 18, 2194 2003

    Article  CAS  Google Scholar 

  19. R.Z. LeGeros, J.P. LeGeros, O.R. Trautz, E. Klein W.P. Shirra: Conversion of monetite, CaHPO4 to apatites: Effect of carbonate on the crystallinity and the morphology of the appatite crystallites. Adv. X-ray Anal. 14, 57 1971

    CAS  Google Scholar 

  20. E.D. Eanes, J.D. Termine M.U. Nylen: An electron microscope study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif. Tissue Res. 12, 143 1973

    Article  CAS  Google Scholar 

  21. E.D. Eanes A.S. Poster: A note on the crystal growth of hydroxyapatite precipitated from aqueous solutions. Mater. Res. Bull. 6, 377 1970

    Article  Google Scholar 

  22. R.C. Tomalin: The principle of similitude. Phys. Rev. 3, 244 1914

    Article  Google Scholar 

  23. D.W. Thomson: On Growth and Form Cambridge University Press Cambridge, UK 1961

    Google Scholar 

  24. E.W. Weibel Fractal geometry: A design principle for living organisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 261, L361 1991

    Article  CAS  Google Scholar 

  25. S.I. Hong: Influence of dynamic strain aging on the dislocation structure. Mater. Sci. Eng. 79, 1 1986

    Article  Google Scholar 

  26. A. Godfrey D.A. Hughes: Physical parameters linking deformation microstructures over a wide range of length scale. Scripta Mater. 51, 831 2004

    Article  CAS  Google Scholar 

  27. S.I. Hong H.J. Kwon: Superplasticity of Cu-Ag microcomposites. J. Mater. Res. 16, 1822 2001

    Article  CAS  Google Scholar 

  28. L.N. Luong, S.I. Hong, R.J. Patel, M.E. Outslay D.H. Kohn: Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27, 1175 2006

    Article  CAS  Google Scholar 

  29. A. Rindby, P. Voglis P. Engstrom: Microdiffraction studies of bone tissues using synchrotron radiation. Biomaterials 19, 2083 1998

    Article  CAS  Google Scholar 

  30. S.I. Hong, S.K. Hong D.K. Kohn: Nanostructural analysis of murine femoral trabecular bone. (unpublished study, University of Michigan) 2007

    Google Scholar 

  31. N.D. Sahar, S.I. Hong D.H. Kohn: Micro- and nano-structural analyses of damage in bone. Micron 36, 617 2005

    Article  Google Scholar 

  32. S. Weiner H.D. Wagner: The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 1998

    Article  CAS  Google Scholar 

  33. K. Khan, H. McKay, P. Kannus, D. Bailey, J. Wark K. Bennel: Physical Activity and Bone Health (Human Kinetics, Champaign, IL, 2001) 16

    Google Scholar 

  34. R.B. Martin, D.B. Burr N.A. Sharkey: Skeletal Tissue Mechanics Springer New York 1998 227

    Book  Google Scholar 

  35. M.A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, T. Ganey R.P. Apkarian: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270 2003

    Article  Google Scholar 

  36. W.J. Landis, M.J. Song, A. Leith, L. McEwen B.F. McEwen: Mineral and organic interaction in normally calcifying tendon visualized in three dimensions by high volatage electron microscopic tomography and graphic imaging reconstruction. J. Struct. Biol. 110, 39 1993

    Article  CAS  Google Scholar 

  37. A.A. Griffith: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A 221, 163 1920

    Google Scholar 

  38. S.I. Hong C. Suryanarayana: Is ductilization of intermetallic compounds by nanostructure processing a possibility? Mater. Trans., JIM 42, 502 2001

    Article  CAS  Google Scholar 

  39. R. Rohanizadeh, R.Z. LeGeros, S. Bohie, P. Pilet, A. Barbier G. Daculsi: Ultrastructural properties of bone mineral of control and tiludronate-treated osteoporotic rat. Calcif. Tissue Int. 67, 330 2000

    Article  CAS  Google Scholar 

  40. D.H. Kohn, N.D. Sahar, S.I. Hong, K. Golcuk M.D. Morris: Local mineral and matrix changes associated with bone adaptation and microdamage in Mechanical Behavior of Biological and Biomimetic Materials, edited by A.J. Bushby, V.L. Ferguson, C-C. Ko, and M.L. Oyen (Mater. Res. Soc. Symp. Proc. 898E, Warrendale, PA) 2006 0898-L09-03

  41. D. Zaffe: Some consideration on biomaterials and bone. Micron. 36, 583 2005

    Article  CAS  Google Scholar 

  42. S.V. Dorozhkin: Calcium orthophosphates. J. Mater. Sci. 42, 1061 2007

    Article  CAS  Google Scholar 

  43. J.Y. Rho, L. Kuhn-Spearing P. Zioupos: Mechanical properties and the hierarchial structure of bone. Med. Eng. Phys. 20, 92 1998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from National Institutes of Health Grants R01 DE 013380 and DE 015411 (to D.H. Kohn). S.I. Hong is grateful for support from the Korea Research Foundation (2004-D00318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.I. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Lee, K., Outslay, M. et al. Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template. Journal of Materials Research 23, 478–485 (2008). https://doi.org/10.1557/JMR.2008.0051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0051

Navigation