Skip to main content
Log in

Fracture size effect in ultrananocrystalline diamond: Applicability of Weibull theory

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An analysis of size effects and doping on the strength of ultrananocrystalline diamond (UNCD) thin films is presented. The doping was achieved by the addition of nitrogen gas to the Ar/CH4 microwave plasma. The strength data, obtained by means of the membrane deflection experiment (MDE) were interpreted using Weibull statistics. The validity and predictive capability of the theory were examined in conjunction with detailed fractographic and transmission electron microscopy microstructural analysis. The Weibull parameters were estimated nonlinear regression based on 480 tests when the specimen volume varied from 500 to 16,000 μm3. Both undoped and doped UNCD films exhibited a decrease in strength with an increase in specimen size. A significant drop in strength was measured when the films were doped with nitrogen. Such a drop was almost independent of the percentage of doping. The results also showed that one can predict the fracture strength of a component possessing any arbitrary volume to within ±3%. Moreover, the failure mode of UNCD was found to be volume controlled. We also report changes in Young’s modulus as a function of doping for n-doped UNCD thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Weibull: A statistical theory of the strength of materials. Proc. R. Swedish Inst. Eng. Res. 151, 1 (1939).

    Google Scholar 

  2. W. Weibull: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293 (1951).

    Google Scholar 

  3. J. Bagdahn, W.N. Sharpe Jr., and O. Jadaan: Fracture strength of polysilicon at stress concentrations. J. Microelectromech. Syst. 12, 302 (2003).

    Article  Google Scholar 

  4. W.N. Sharpe Jr., K.M. Jackson, J.H. Kevin, and Z. Xie: Effect of specimen size on Young’s modulus and fracture strength of polysilicon. J. Microelectromech. Syst. 10, 317 (2001).

    Article  CAS  Google Scholar 

  5. D.A. LaVan, T. Tsuchiya, G. Coles, W.G. Knauss, I. Chasiotis, and D. Read: Cross comparison of direct strength testing techniques on polysilicon films, in Mechanical Properties of Structural Films, edited by C. Muhlstein and S.B. Brown (American Society for Testing and Materials, West Conshohocken, PA, 2001).

    Google Scholar 

  6. D.A. LaVan, K. Jackson, S.J. Glass, T.A. Friedmann, J.P. Sullivan, and T. Buchheit: Direct tension and fracture toughness testing using the lateral force capabilities of a nanomechanical test system, in Mechanical Properties of Structural Films, edited by C. Muhlstein and S.B. Brown (American Society for Testing and Materials, West Conshohocken, PA, 2001).

    Google Scholar 

  7. K.M. Jackson, J. Dunning, C.A. Zorman, M. Mehregany, and W.N. Sharpe Jr.: Mechanical properties of epitaxial 3C silicon carbide thin films. J. Microelectromech. Syst. 14, 664 (2005).

    Article  CAS  Google Scholar 

  8. H.D. Espinosa, B. Peng, B.C. Prorok, N. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, and D.C. Mancini: Fracture strength of ultrananocrystalline diamond thin films—Identification of Weibull parameters. J. Appl. Phys. 94, 6076 (2003).

    Article  CAS  Google Scholar 

  9. H.D. Espinosa, B.C. Prorok, B. Peng, K.H. Kim, N. Moldovan, O. Auciello, J.A. Carlisle, D.M. Gruen, and D.C. Mancini: Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices. Experimental Mechanics 43, 256 (2003).

    Article  CAS  Google Scholar 

  10. I. Chasiotis and W.G. Knauss: The mechanical strength of polysilicon films: Part 1. The influence of fabrication governed surface conditions. J. Mech. Phys. Solids 51, 1553 (2003).

    Google Scholar 

  11. I. Chasiotis and W.G. Knauss: The mechanical strength of polysilicon films: Part 2. Size effects associated with elliptical and circular perforations. J. Mech. Phys. Solids 51, 1551 (2003).

    Article  CAS  Google Scholar 

  12. K.S. Chen, A. Ayon, and S.M. Spearing: Controlling and testing the fracture strength of silicon on the mesoscale. J. Am. Ceram. Soc. 83, 1476 (2000).

    Article  CAS  Google Scholar 

  13. T. Tsuchiya, J. Sakata, and Y. Taga: Tensile strength and fracture toughness of surface micromachined polycrystalline silicon thin films prepared under various conditions, in Thin-Films—Stresses and Mechanical Properties VII, edited by R.C. Cammarata, M. Nastasi, E.P. Busso and W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), pp. 285–290.

    Google Scholar 

  14. D.T. Read, J.D. McColskey, R. Geiss, and Y.W. Cheng: Microtensile testing of thin films in the optical and scanning electron microscopes, in Characterization and Metrology for ULSI Technology, edited by D.G. Seiler and A.C. Diebold (AIP Conference Proceedings 683, 2003), pp. 353–356.

    Google Scholar 

  15. D.M. Gruen: Nanocrystalline diamond films. Ann. Rev. Mater. Sci. 29, 211 (1999).

    Article  CAS  Google Scholar 

  16. D. Zhou, T.G. McCauley, L.C. Qin, A.R. Krauss, and D.M. Gruen: Synthesis of nanocrystalline diamond thin film from an Ar–CH4 microwave plasma. J. Appl. Phys. 83, 540 (1998).

    Article  CAS  Google Scholar 

  17. O. Auciello, J. Birrell, J.A. Carlisle, J.E. Gerbi, X. Xiao, B. Peng, and H.D. Espinosa: Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. J. Phys. Condens. Matter 16, R539 (2004).

    Article  CAS  Google Scholar 

  18. A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, and R.W. Carpick: Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039 (2005).

    Article  CAS  Google Scholar 

  19. A. Erdemir, G.R. Fenske, A.R. Krauss, D.M. Gruen, T. McCauley, and R.T. Csencsits: Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120, 565 (1999).

    Article  Google Scholar 

  20. A.R. Krauss, O. Auciello, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin: Electron field emissions for ultrananocrystalline diamond films. J. Appl. Phys. 89, 2958 (2001).

    Article  CAS  Google Scholar 

  21. B. Bhattacharyya, O. Auciello, J. Birrell, J.A. Carlisle, L.A. Curtiss, A.N. Goyette, D.M. Gruen, A.R. Krauss, J. Schlueter, A. Suman, and P. Zapol: Synthesis and characterization of highly-conducting nitrogen doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441 (2001).

    Article  CAS  Google Scholar 

  22. J. Birrell, J.A. Carlisle, O. Auciello, D.M. Gruen, and J.M. Gibson: Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Appl. Phys. Lett. 81, 2235 (2002).

    Article  CAS  Google Scholar 

  23. W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, L.M. Smith, and R.J. Hamers: DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1, 253 (2002).

    Article  CAS  Google Scholar 

  24. K.H. Kim, N. Moldovan, C. Ke, H.D. Espinosa, X. Xiao, J.A. Carlisle, and O. Auciello: Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1, 866 (2005).

    Article  CAS  Google Scholar 

  25. H.D. Espinosa, B.C. Prorok, and M. Fisher: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51, 47 (2003).

    Article  CAS  Google Scholar 

  26. W. Weibull: The phenomenon of rupture in solids. Proc. R. Swedish Inst. Eng. Res. 153, 1 (1939).

    Google Scholar 

  27. Z.P. Bazant, Y. Zhou, D. Novak, and I.M. Daniel: Size effect on flexural strength of fiber-composite laminates. J. Eng. Mater. Technol. 126, 29 (2004).

    Article  Google Scholar 

  28. C.A. Johnson and W.T. Tucker: Advanced statistical concepts of fracture in brittle materials. Eng. Mater. Handbook, Ceram. Glasses 4, 709 (1991).

    Google Scholar 

  29. N. Pugno, B. Peng, and H.D. Espinosa: Prediction of strength in MEMS components with defects—A novel experimental-theoretical approach. Int. J. Solid Struct. 42, 647 (2005).

    Article  Google Scholar 

  30. H.D. Espinosa and B. Peng: A new methodology to investigate fracture toughness of freestanding MEMS and advanced materials in thin film form. J. Microelectromech. Syst. 14, 153 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Espinosa.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of articles authored by editors, please refer to http://www.mrs.org/jmr_policy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Li, C., Moldovan, N. et al. Fracture size effect in ultrananocrystalline diamond: Applicability of Weibull theory. Journal of Materials Research 22, 913–925 (2007). https://doi.org/10.1557/jmr.2007.0137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0137

Navigation