Skip to main content
Log in

Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hardness and elastic modulus of ultra thin amorphous carbon overcoat (COC) films were measured using a recently developed sub-nm nanoindentation system. The carbon overcoat film thickness was varied to be 2.5 nm, 5 nm, and 10 nm on a glass substrate with a 2 nm titanium interlayer. A very sharp indenting tip, which was a cube corner tip with a radius of 44 nm, was used for the experiments. It was found that the mechanical properties of sub-10 nm film thicknesses can be reliably measured using the sub-nm indentation system and a sharp indenting tip. As the thickness of the carbon overcoat increased, so too did the surface roughness. For all three film thickness samples, the trends of hardness and elastic modulus values with the contact depth are very similar. When the contact depth is smaller than the film thickness, the measured values of hardness and elastic modulus are higher than those of the glass substrate, and gradually decrease and then approach the values of glass substrate. When the contact depth is larger than the film thickness, the measured values approximate those of the glass substrate. The thinner film shows higher values of hardness and elastic modulus near the surface, which indicates that mechanical properties do change with film thickness and that measurements made on thicker films and extrapolated to thinner films may lead to incorrect conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Yamamoto, Y. Kasamatsu, and H. Hyodo: Advanced stiction-free slider and DLC overcoat. FUJITSU Sci. Tech. J. 37(2), 201 (2001).

    CAS  Google Scholar 

  2. P. Chaudhari: Information technology: A play of materials. MRS Bull. 27(7), 55 (2000).

    Article  Google Scholar 

  3. B. Bhushan and X. Li: Nanomechanical characterization of solid surfaces and thin films. Int. Mater. Rev. 48(3), 125 (2003).

    Article  CAS  Google Scholar 

  4. C. Charitidis and S. Logothetidis: Nanomechanical and nanotribological properties of carbon based films. Thin Solid Films 482, 120 (2005).

    Article  CAS  Google Scholar 

  5. P. Lemoine, J.F. Zhao, J.P. Quinn, J.A. McLaughlin, and P. Maguire: Hardness measurements at shallow depths on ultra-thin amorphous carbon films deposited onto silicon and Al2O3-TiC substrates. Thin Solid Films 379, 166 (2000).

    Article  CAS  Google Scholar 

  6. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  7. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  8. Y. Cheng and C. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  9. M. Kohzaki, A. Matsumuro, T. Hayashi, M. Muramatsu, and K. Yamaguchi: Preparation of carbon nitride thin films by ion-beam-assisted deposition and their mechanical properties. Thin Solid Films 308–309, 239 (1997).

    Article  Google Scholar 

  10. T.W. Scharf, H. Deng, and J.A. Barnard: Nanowear/nanomechanical testing and the role of stress in sputtered CNx overcoats. J. Appl. Phys. 81(8), 5393 (1997).

    Article  CAS  Google Scholar 

  11. Z. Xu and D. Rowcliffe: Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448, 399 (2004).

    Article  Google Scholar 

  12. H. Buckle: The Science of Hardness Testing and Its Research Applications (American Society for Metals, Metals Park, OH, 1973), pp. 453.

    Google Scholar 

  13. S. Logothetidis: Surface and interface properties of amorphous carbon layers on rigid and flexible substrates. Thin Solid Films 482, 9 (2005).

    Article  CAS  Google Scholar 

  14. N. Yu, W.A. Bonin, and A.A. Polycarpou: High-resolution capacitive load-displacement transducer and its application in nanoindentation and adhesion force measurements. Rev. Sci. Instrum. 76, 045109 (2005).

    Article  Google Scholar 

  15. E.V. Anoikin, M.M. Yang, J.L. Chao, and M.A. Russak: Magnetic hard disk overcoats in the 3–5 nm thickness range. J. Appl. Phys. 85(8), 5606 (1999).

    Article  CAS  Google Scholar 

  16. K.J. Grannen, X. Ma, and R. Thangaraj: Ion beam deposition of carbon overcoats for magnetic thin film media. IEEE Trans. Magn. 36(1), 120 (2000).

    Article  CAS  Google Scholar 

  17. T. Chudoba and F. Richter: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191 (2001).

    Article  CAS  Google Scholar 

  18. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  19. S. Butterworth: On the theory of filter amplifiers. Wireless Engineer. 7, 536 (1930).

    Google Scholar 

  20. K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Lou, T. Mathia, and H. Zahouani: The Development of Methods for the Characterization of Roughness in Three Dimension (Commission of the European Communities, Printed in Univ. of Birmingham, Report EUR 15178 EN, 1993).

    Google Scholar 

  21. A.Y. Suh and A.A. Polycarpou: Effect of molecularly thin lubricant on roughness and adhesion of magnetic disks intended for extremely high-density recording. Tribol. Lett. 15(4), 365 (2003).

    Article  CAS  Google Scholar 

  22. G.W. Mbise, G.A. Niklasson, and C.G. Granqvist: Scaling of surface roughness in evaporated calcium fluoride films. Solid State Comm. 97(11), 965 (1996).

    Article  CAS  Google Scholar 

  23. K.K. Nanda, S.N. Sarangi, and S.N. Sahu: Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films. Appl. Surf. Sci. 133, 293 (1998).

    Article  CAS  Google Scholar 

  24. H.N. Yang, Y.P. Zhao, G.C. Wang, and T.M. Lu: Noise-induced roughening evolution of amorphous Si films grown by thermal evaporation. Phys. Rev. Lett. 76(20), 3774 (1996).

    Article  CAS  Google Scholar 

  25. Z.J. Liu, N. Jiang, Y.G. Shen, and Y.W. Mai: Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films. J. Appl. Phys. 92(7), 3559 (2002).

    Article  CAS  Google Scholar 

  26. F. Family and T. Vicsek: Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75 (1985).

    Article  Google Scholar 

  27. R.L. Schwoebel and E.J. Shipsey: Step motion on crystal surfaces. Appl. Phys. 37, 3682 (1966).

    Article  CAS  Google Scholar 

  28. R.L. Schwoebel: Step motion on crystal surfaces. II. J. Appl. Phys. 40, 614 (1968).

    Article  Google Scholar 

  29. J. Villain: Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. (France) I 1, 19 (1991).

    Article  Google Scholar 

  30. M. Siegert and M. Plischke: Slope selection and coarsening in molecular beam epitaxy. Phys. Rev. Lett. 73, 1517 (1994).

    Article  CAS  Google Scholar 

  31. S.J. Bull and A.M. Korsunsky: Mechanical properties of thin carbon overcoats. Tribol. Int. 31(9), 547 (1998).

    Article  CAS  Google Scholar 

  32. M. Lichinchi, C. Lenardi, J. Haugt, and K. Vitali: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312, 240 (1998).

    Article  CAS  Google Scholar 

  33. Z. Xu and D. Rowcliffe: Nanoindentation on diamond-like carbon and alumina coatings. Surf. Coat. Technol. 161, 44 (2002).

    Article  CAS  Google Scholar 

  34. O.R. Monteiro: Thin film synthesis by energetic condensation. Annu. Rev. Mater. Res. 31, 111 (2001).

    Article  CAS  Google Scholar 

  35. Y. Lifshitz: Diamondlike carbon—present status. Diamond Rel. Mater. 8, 1659 (1999).

    Article  CAS  Google Scholar 

  36. S. Veprek and A. S. Argon: Mechanical properties of superhard nanocomposites. Surf. Coat. Technol. 146–147, 175 (2001).

    Article  Google Scholar 

  37. D.C. Montgomery: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001), p. 96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, CD., Polycarpou, A.A., Kiely, J.D. et al. Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique. Journal of Materials Research 22, 141–151 (2007). https://doi.org/10.1557/jmr.2007.0007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0007

Navigation