Skip to main content
Log in

A critical examination of the relationship between plastic deformation zone size and Young’s modulus to hardness ratio in indentation testing

  • Outstanding Meeting Paper
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Existing indentation models (both analytical models and numerical analysis) show a linear relationship between δrm and H/Er, where δr and δm are the residual and maximum indentation depth, and Er and H are the reduced Young’s modulus and hardness of the test material. Based on the analysis of Oliver and Pharr, a new relationship between δrm and H/Er has been derived in a different way without any additional assumptions, which is nonlinear, and this has been verified by finite element analysis for a range of bulk materials. Furthermore, this new relationship for residual depth is used to derive an analytical relationship for the radius of the plastic deformation zone Rp in terms of the residual depth, Young’s modulus, and hardness, which has also been verified by finite element simulations for elastic perfectly plastic materials with different work hardening behavior. The analytical model and finite element simulation confirms that the conventional relationship used to determine Rp developed by Lawn et al. overestimates the plastic deformation, especially for those materials with high E/H ratio. The model and finite element analysis demonstrate that Rp scales with δr, which is sensible given the self-similarity of the indentations at different scales, and that the ratio of Rp/δr is nearly constant for materials with different E/H, which contradicts the conventional view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. G.M. Pharr, W.C. Oliver, F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  3. S.V. Hainsworth, H.W. Chandler, T.F. Page: Analysis of nanoindentation load-displacement loading curves. J. Mater. Res. 11, 1987 (1996).

    Article  CAS  Google Scholar 

  4. X. Li, D. Diao, B. Bhushan: Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 45, 4453 (1997).

    Article  CAS  Google Scholar 

  5. J. Malzbender, G. de With, J. den Toonder: Elastic modulus, indentation pressure and fracture toughness of hybrid coatings on glass. Thin Solid Films 366, 139 (2000).

    Article  CAS  Google Scholar 

  6. J. Chen, S.J. Bull: Assessment of the toughness of thin coatings using nanoindentation under displacement control. Thin Solid Films 494, 1 (2006).

    Article  CAS  Google Scholar 

  7. Y.T. Cheng, C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  8. Y.T. Cheng, Z. Li, C.M. Cheng: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).

    Article  CAS  Google Scholar 

  9. J. Malzbender, G. de With: Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf. Coat. Technol. 135, 60 (2000).

    Article  CAS  Google Scholar 

  10. B.R. Lawn, A.G. Evans, D.B. Marshall: Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63, 574 (1980).

    Article  CAS  Google Scholar 

  11. P.J. Burnett, D.S. Rickerby: The mechanical properties of wear-resistant coatings. 1. Modeling of hardness behaviour. Thin Solid Films 148, 41 (1987).

    Article  CAS  Google Scholar 

  12. A.E. Giannakopoulos, S. Suresh: Determination of elastoplastic properties by instrumented sharp indentation. Script Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  13. S. Harvey, H. Huang, S. Venkataraman, W.W. Gerberich: Microscopy and microindentation mechanics of single-crystal Fe-3 wt% Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).

    Article  CAS  Google Scholar 

  14. I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  15. B.R. Lawn, V.R. Howes: Elastic recovery at hardness indentations. J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  16. M. Sakai: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  17. M. Sakai, S. Shimizu, T. Ishikawa: The indentation load-depth curve of ceramics. J. Mater. Res. 14, 1471 (1999).

    Article  CAS  Google Scholar 

  18. M. Sakai: Simultaneous estimate of elastic/plastic parameters in depth-sensing indentation tests. Scripta Mater. 51, 391 (2004).

    Article  CAS  Google Scholar 

  19. S.J. Bull: Interface engineering and graded films: Structure and characterization. J. Vac. Sci. Technol., A 19, 1404 (2001).

    Article  CAS  Google Scholar 

  20. S.J. Bull, E. G-Berasetegui, T. F. Page: Modelling of the indentation response of coatings and surface treatments. Wear 256, 857 (2004).

    Article  CAS  Google Scholar 

  21. G.M. Pharr, A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  22. J. Malzbender, G. de With: The use of the loading curve to assess soft coatings. Surf. Coat. Technol. 127, 265 (2000).

    Article  Google Scholar 

  23. W.C. Oliver: Alternative technique for analyzing instrumented indentation data. J. Mater. Res. 16, 3202 (2001).

    Article  CAS  Google Scholar 

  24. J. Malzbender, G. de With, J. den Toonder: The P-h2 relationship in indentation. J. Mater. Res. 15, 1209 (2000).

    Article  CAS  Google Scholar 

  25. Y. Bao, L. Liu, Y. Zhou: Assessing the elastic parameters and energy-dissipation capacity of solid materials: A residual indent may tell all. Acta Mater. 53, 4857 (2005).

    Article  CAS  Google Scholar 

  26. J. Malzbender: Comment on the determination of mechanical properties from the energy dissipated during indentation. J. Mater. Res. 20, 1090 (2005).

    Article  CAS  Google Scholar 

  27. J. Alkorta, J.M. Martinez-Esnaola, J.G. Sevillano: Comments on “Comment on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [J. Mater. Res. 20, 1090 (2005)]. J. Mater. Res. 21, 302 (2006).

    Article  CAS  Google Scholar 

  28. J. Menčik, M.V. Swain: Microindentation tests with pointed indenters. Mater. Forum 18, 277 (1994).

    Google Scholar 

  29. J. Liu, M.C. Mwanza, P.A.S Reed, S. Syngellakis: ANSYS Application Note. (ANSYS Inc., Canonsburg, PA, 2002).

    Google Scholar 

  30. ANSYS 8.0 Documentation, ANSYS Inc., Canonsburg, PA.

  31. S. Soare: Design of a rotating sensor for stress measurement in metallisation. Ph.D. Thesis, University of Newcastle Upon Tyne (2004).

    Google Scholar 

  32. A. Bolshakov, G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth-sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  33. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  34. M. Li, W. Chen, N. Liang, L. Wang: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 73 (2004).

    Article  Google Scholar 

  35. Y.T. Cheng, C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  36. D.B. Marsh: Plastic flow in glass. Proc. R. Soc. Lond. A 279, 420 (1963).

    Google Scholar 

  37. L.J. Vandeperre, F. Giuliani, W.J. Clegg: Effect of elastic surface deformation on the relation between hardness and yield strength. J. Mater. Res. 19, 3704 (2004).

    Article  CAS  Google Scholar 

  38. W. Yu, J.P. Blanchard: An elastic-plastic indentation model and its solutions. J. Mater. Res. 11, 2358 (1996).

    Article  CAS  Google Scholar 

  39. D. Tabor: Hardness of Metals. (Clarendon Press, Oxford, 1951).

    Google Scholar 

  40. J. Chen and S.J. Bull: (in preparation).

  41. J.C. Hay, A. Bolshakov, G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  42. M. Troyon, L. Huang: About the correction factor for contact area in nanoindentation measurements. J. Mater. Res. 20, 610 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Bull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Bull, S.J. A critical examination of the relationship between plastic deformation zone size and Young’s modulus to hardness ratio in indentation testing. Journal of Materials Research 21, 2617–2627 (2006). https://doi.org/10.1557/jmr.2006.0323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0323

Navigation